Advertisement

Herzschrittmachertherapie + Elektrophysiologie

, Volume 30, Issue 3, pp 256–261 | Cite as

Vorhofflimmern bei nichtkardialen Infektionen und Sepsis

  • Benjamin RathEmail author
  • Philipp Niehues
  • Patrick Leitz
  • Lars Eckardt
Schwerpunkt
  • 83 Downloads

Zusammenfassung

Vorhofflimmern (VHF) ist die mit Abstand häufigste mit Infektionen bzw. Sepsis assoziierte Herzrhythmusstörung. Neu aufgetretenes VHF im Rahmen einer Infektion ist mit einer Verschlechterung der Prognose sowohl für das Akutereignis als auch für die langfristige Prognose der Patienten assoziiert. Das Risiko, VHF im Rahmen einer Infektion zu entwickeln, hängt sowohl von allgemeinen (z. B. Alter, strukturelle Herzerkrankung) als auch von infektionsspezifischen Faktoren (z. B. Schwere der Sepsis, Katecholamintherapie) ab. Für die Therapie von infektassoziiertem VHF gibt es bisher keine Leitlinienempfehlungen bzw. kaum prospektive Daten. Die Verwendung von β‑Blockern scheint sowohl zur Prophylaxe als auch zur Frequenzkontrolle selbst bei katecholaminpflichtigen Patienten vertretbar zu sein. Zur spezifischen antiarrhythmischen Therapie ist neben dem bisher überwiegend verwendeten Amiodaron auch der Einsatz von Klasse-I-Antiarrhythmika denkbar. Neu aufgetretenes VHF im Rahmen von Infektionen wurde lange als spezifische Entität mit niedrigem Rezidivrisiko betrachtet, sodass nur ein geringer Teil der Patienten im Verlauf eine effektive Antikoagulation erhalten hat. Daten aus größeren, retrospektiven Studien legen allerdings deutlich höhere Rezidivraten nahe, sodass die Frage, inwieweit dieses Patientenkollektiv von einer langfristigen effektiven Antikoagulation bzw. einem erweiterten Arrhythmie-Monitoring profitiert, Gegenstand zukünftiger Untersuchungen sein sollte.

Schlüsselwörter

Herzerkrankungen Rhythmusstörungen Sepsis Infektionen Antikoagulation 

Abkürzungen

AHA

American Heart Association

CRP

C-reaktives Protein

ESC

European Society of Cardiology

IL

Interleukin

i.v.

Intravenös

VHF

Vorhofflimmern

Atrial fibrillation in patients with sepsis and non-cardiac infections

Abstract

Atrial fibrillation (AF) is by far the most frequent cardiac arrhythmia associated with sepsis and infections. Newly occurring AF due to infections is associated with a deterioration of the prognosis for acute events and also for the long-term prognosis of patients. The risk of developing AF during an infection depends on general (e.g. age, structural heart disease) as well as infection-specific risk factors (e.g. sepsis severity, vasopressor treatment). Current guidelines do not make specific recommendations on the treatment of infection-associated AF and very few prospective data are available. The use of beta blockers appears to be safe for both prevention and frequency control of AF even in patients requiring catecholamines. For specific antiarrhythmic treatment, the use of class I antiarrhythmic agents is conceivable as an alternative to the predominantly used amiodarone. Newly occurring AF within infections has long been considered a specific entity with a low risk of recurrence, so that only a small proportion of patients received long-term effective anticoagulation; however, data from large retrospective studies suggest significantly higher recurrence rates. Therefore, the question of whether this group of patients benefits from long-term effective anticoagulation and extended monitoring of arrhythmia should be the subject of future research.

Keywords

Cardiac diseases Cardiac arrhythmia Sepsis Infections Anticoagulation 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

B. Rath, P. Niehues, P. Leitz und L. Eckardt geben an, dass kein Interessenkonflikt im Hinblick auf diese Arbeit besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Violi F, Cangemi R, Falcone M, Taliani G, Pieralli F, Vannucchi V et al (2017) Cardiovascular complications and short-term mortality risk in community-acquired pneumonia. Clin Infect Dis 64(11):1486–1493CrossRefGoogle Scholar
  2. 2.
    Balik M, Kolnikova I, Maly M, Waldauf P, Tavazzi G, Kristof J (2017) Propafenone for supraventricular arrhythmias in septic shock–comparison to amiodarone and metoprolol. J Crit Care 41:16–23CrossRefGoogle Scholar
  3. 3.
    McIntyre WF, Um KJ, Cheung CC, Belley-Cote EP, Dingwall O, Devereaux PJ et al (2019) Atrial fibrillation detected initially during acute medical illness: A systematic review. Eur Heart J Acute Cardiovasc Care 8(2):130–141CrossRefGoogle Scholar
  4. 4.
    Kuipers S, Klein Klouwenberg PM, Cremer OL (2014) Incidence, risk factors and outcomes of new-onset atrial fibrillation in patients with sepsis: A systematic review. Crit Care 18(6):688CrossRefGoogle Scholar
  5. 5.
    Pieralli F, Biondo B, Vannucchi V, Falcone M, Antonielli E, De Marzi G et al (2019) Performance of the CHA2DS2-VASc score in predicting new onset atrial fibrillation during hospitalization for community-acquired pneumonia. Eur J Intern Med 62:24–28CrossRefGoogle Scholar
  6. 6.
    Guenancia C, Binquet C, Laurent G, Vinault S, Bruyere R, Prin S et al (2015) Incidence and predictors of new-onset atrial fibrillation in septic shock patients in a medical ICU: Data from 7‑day Holter ECG monitoring. PLoS ONE 10(5):e127168CrossRefGoogle Scholar
  7. 7.
    Walkey AJ, Wiener RS, Ghobrial JM, Curtis LH, Benjamin EJ (2011) Incident stroke and mortality associated with new-onset atrial fibrillation in patients hospitalized with severe sepsis. JAMA 306(20):2248–2254CrossRefGoogle Scholar
  8. 8.
    Klein Klouwenberg PM, Frencken JF, Kuipers S, Ong DS, Peelen LM, van Vught LA et al (2017) Incidence, predictors, and outcomes of new-onset atrial fibrillation in critically ill patients with sepsis. A cohort study. Am J Respir Crit Care Med 195(2):205–211CrossRefGoogle Scholar
  9. 9.
    Meierhenrich R, Steinhilber E, Eggermann C, Weiss M, Voglic S, Bogelein D et al (2010) Incidence and prognostic impact of new-onset atrial fibrillation in patients with septic shock: A prospective observational study. Crit Care 14(3):R108CrossRefGoogle Scholar
  10. 10.
    Schwartz A, Brotfain E, Koyfman L, Kutz R, Gruenbaum SE, Klein M et al (2014) Association between hypophosphatemia and cardiac arrhythmias in the early stage of sepsis: Could phosphorus replacement treatment reduce the incidence of arrhythmias? Electrolyte Blood Press 12(1):19–25CrossRefGoogle Scholar
  11. 11.
    Macchia A, Romero M, Comignani PD, Mariani J, D’Ettorre A, Prini N et al (2012) Previous prescription of beta-blockers is associated with reduced mortality among patients hospitalized in intensive care units for sepsis. Crit Care Med 40(10):2768–2772CrossRefGoogle Scholar
  12. 12.
    Gernoth C, Wagner G, Pelosi P, Luecke T (2009) Respiratory and haemodynamic changes during decremental open lung positive end-expiratory pressure titration in patients with acute respiratory distress syndrome. Crit Care 13(2):R59CrossRefGoogle Scholar
  13. 13.
    Bosch NA, Cohen DM, Walkey AJ (2019) Risk factors for new-onset atrial fibrillation in patients with sepsis: A systematic review and meta-analysis. Crit Care Med 47(2):280–287CrossRefGoogle Scholar
  14. 14.
    Guo Y, Lip GY, Apostolakis S (2012) Inflammation in atrial fibrillation. J Am Coll Cardiol 60(22):2263–2270CrossRefGoogle Scholar
  15. 15.
    Brown AO, Mann B, Gao G, Hankins JS, Humann J, Giardina J et al (2014) Streptococcus pneumoniae translocates into the myocardium and forms unique microlesions that disrupt cardiac function. PLoS Pathog 10(9):e1004383CrossRefGoogle Scholar
  16. 16.
    Bolz DD, Li Z, McIndoo ER, Tweten RK, Bryant AE, Stevens DL (2015) Cardiac myocyte dysfunction induced by streptolysin O is membrane pore and calcium dependent. Shock 43(2):178–184CrossRefGoogle Scholar
  17. 17.
    Sulakhe PV, Sandirasegarane L, Davis JP, Vo XT, Costain WJ, Mainra RR (1996) Alterations in inotropy, nitric oxide and cyclic GMP synthesis, protein phosphorylation and ADP-ribosylation in the endotoxin-treated rat myocardium and cardiomyocytes. Mol Cell Biochem 163/164:305–318CrossRefGoogle Scholar
  18. 18.
    Zoni-Berisso M, Lercari F, Carazza T, Domenicucci S (2014) Epidemiology of atrial fibrillation: European perspective. Clin Epidemiol 6:213–220CrossRefGoogle Scholar
  19. 19.
    Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B et al (2016) 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J 37(38):2893–2962CrossRefGoogle Scholar
  20. 20.
    January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC Jr. et al (2014) 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol 64(21):e1–e76CrossRefGoogle Scholar
  21. 21.
    Reinhart K, Brunkhorst FM, Bone HG, Bardutzky J, Dempfle CE, Forst H et al (2010) Prevention, diagnosis, therapy and follow-up care of sepsis: 1st revision of S‑2k guidelines of the German Sepsis Society (Deutsche Sepsis-Gesellschaft e. V. (DSG)) and the German Interdisciplinary Association of Intensive Care and Emergency Medicine (Deutsche Interdisziplinäre Vereinigung für Intensiv- und Notfallmedizin (DIVI)). Ger Med Sci 8:Doc14Google Scholar
  22. 22.
    Bruins P, te Velthuis H, Yazdanbakhsh AP, Jansen PG, van Hardevelt FW, de Beaumont EM et al (1997) Activation of the complement system during and after cardiopulmonary bypass surgery: postsurgery activation involves C‑reactive protein and is associated with postoperative arrhythmia. Circulation 96(10):3542–3548CrossRefGoogle Scholar
  23. 23.
    van der Hooft CS, Heeringa J, van Herpen G, Kors JA, Kingma JH, Stricker BH (2004) Drug-induced atrial fibrillation. J Am Coll Cardiol 44(11):2117–2124CrossRefGoogle Scholar
  24. 24.
    McIntyre WF, Um KJ, Alhazzani W, Lengyel AP, Hajjar L, Gordon AC et al (2018) Association of vasopressin plus catecholamine vasopressors vs catecholamines alone with atrial fibrillation in patients with distributive shock: A systematic review and meta-analysis. JAMA 319(18):1889–1900CrossRefGoogle Scholar
  25. 25.
    Venkatesh B, Finfer S, Cohen J, Rajbhandari D, Arabi Y, Bellomo R et al (2018) Adjunctive glucocorticoid therapy in patients with septic shock. N Engl J Med 378(9):797–808CrossRefGoogle Scholar
  26. 26.
    Morelli A, Ertmer C, Westphal M, Rehberg S, Kampmeier T, Ligges S et al (2013) Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: A randomized clinical trial. JAMA 310(16):1683–1691CrossRefGoogle Scholar
  27. 27.
    Liu WC, Lin WY, Lin CS, Huang HB, Lin TC, Cheng SM et al (2016) Prognostic impact of restored sinus rhythm in patients with sepsis and new-onset atrial fibrillation. Crit Care 20(1):373CrossRefGoogle Scholar
  28. 28.
    Echt DS, Liebson PR, Mitchell LB, Peters RW, Obias-Manno D, Barker AH et al (1991) Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N Engl J Med 324(12):781–788CrossRefGoogle Scholar
  29. 29.
    Keller M, Meierhenrich R (2017) New onset atrial fibrillation in patients with sepsis. Anaesthesist 66(10):786–794CrossRefGoogle Scholar
  30. 30.
    Rudiger A (2010) Beta-block the septic heart. Crit Care Med 38(10 Suppl):S608–S612CrossRefGoogle Scholar
  31. 31.
    Balik M, Rulisek J, Leden P, Zakharchenko M, Otahal M, Bartakova H et al (2012) Concomitant use of beta-1 adrenoreceptor blocker and norepinephrine in patients with septic shock. Wien Klin Wochenschr 124(15/16):552–556CrossRefGoogle Scholar
  32. 32.
    Balik M, Matousek V, Maly M, Brozek T (2017) Management of arrhythmia in sepsis and septic shock. Anaesthesiol Intensive Ther 49(5):419–429CrossRefGoogle Scholar
  33. 33.
    Walkey AJ, Evans SR, Winter MR, Benjamin EJ (2016) Practice patterns and outcomes of treatments for atrial fibrillation during sepsis: A propensity-matched cohort study. Chest 149(1):74–83CrossRefGoogle Scholar
  34. 34.
    Darwish OS, Strube S, Nguyen HM, Tanios MA (2013) Challenges of anticoagulation for atrial fibrillation in patients with severe sepsis. Ann Pharmacother 47(10):1266–1271CrossRefGoogle Scholar
  35. 35.
    Walkey AJ, Quinn EK, Winter MR, McManus DD, Benjamin EJ (2016) Practice patterns and outcomes associated with use of anticoagulation among patients with atrial fibrillation during sepsis. JAMA Cardiol 1(6):682–690CrossRefGoogle Scholar
  36. 36.
    Schoaps RS, Quintili A, Bonavia A, Carr ZJ, Lehman EB, Abendroth T et al (2019) Stroke prophylaxis in critically-ill patients with new-onset atrial fibrillation. J Thromb ThrombolysisGoogle Scholar
  37. 37.
    Lubitz SA, Yin X, Rienstra M, Schnabel RB, Walkey AJ, Magnani JW et al (2015) Long-term outcomes of secondary atrial fibrillation in the community: The Framingham Heart Study. Circulation 131(19):1648–1655CrossRefGoogle Scholar
  38. 38.
    Walkey AJ, Hammill BG, Curtis LH, Benjamin EJ (2014) Long-term outcomes following development of new-onset atrial fibrillation during sepsis. Chest 146(5):1187–1195CrossRefGoogle Scholar
  39. 39.
    Quon MJ, Behlouli H, Pilote L (2018) Anticoagulant use and risk of Ischemic stroke and bleeding in patients with secondary atrial fibrillation associated with acute coronary syndromes, acute pulmonary disease, or sepsis. JACC Clin Electrophysiol 4(3):386–393CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Benjamin Rath
    • 1
    Email author
  • Philipp Niehues
    • 1
  • Patrick Leitz
    • 1
  • Lars Eckardt
    • 1
  1. 1.Klinik für Kardiologie II – RhythmologieUniversitätsklinikum MünsterMünsterDeutschland

Personalised recommendations