Advertisement

Bedeutung des rechten Ventrikels bei Erwachsenen mit angeborenen Herzfehlern

Besonderheiten des chirurgischen und perioperativen Managements
  • P. Saur
  • C. Haller
Perioperative Medizin
  • 33 Downloads

Zusammenfassung

Die Zahl der Erwachsenen mit angeborenen Herzfehlern (EMAH) übersteigt bereits jetzt die der Kinder mit angeborenen Herzfehlern, und ein weiterer Anstieg ist zu erwarten. Eine Besonderheit dieser Patienten ist der rechte Ventrikel (RV), da dieser häufig lange Zeit unphysiologischen Bedingungen ausgesetzt ist. Insbesondere Patienten mit dem RV in der Systemzirkulation nehmen eine Sonderstellung ein. Deren chirurgisches und perioperatives Management berücksichtigt die Besonderheiten des RV und bezieht individuelle patientenspezifische Faktoren ein. Operative Strategien versuchen, die RV-Funktion langfristig zu erhalten und assoziierte Vitien zu korrigieren. Die perioperative Betreuung dieser Patienten ist auf die Anpassung der Vor- und Nachlast fokussiert, häufig mit dem Ziel, die Vorlast zu erhöhen, die Nachlast zu senken und frühe Spontanatmung zu etablieren. Die Optimierung des Herzrhythmus und der Sauerstoffsättigung bilden zusätzliche Optionen. In einigen Fällen kann eine Stabilisierung lediglich durch mechanische Unterstützungssysteme oder durch eine Herztransplantation erreicht werden.

Schlüsselwörter

Myokard Herzrhythmus Ventrikuläre Funktion Univentrikuläre Zirkulation Herzversagen 

Importance of the right ventricle in adults with congenital heart diseases

Special considerations for surgical and perioperative management

Abstract

Adults with congenital heart disease (ACHD) outnumber children with congenital heart disease and numbers are expected to increase further. A distinctive feature of these patients is the right ventricle (RV) as it is often exposed to non-physiological conditions for extended period of time. Especially patients with the RV in the systemic circulation form a unique subgroup. The respective surgical and perioperative management takes the characteristics of the RV into account and considers individual patient-specific aspects. Operative strategies aim to preserve RV function in the long term and to correct associated lesions. The perioperative care of these patients focuses on adequate adjustment of preload and afterload, often targeting an increase in preload, afterload reduction and transition to early spontaneous breathing. Other options are optimization of the heart rhythm and oxygen saturation. In some instances, stabilization can only be achieved with mechanical circulatory support or heart transplantation.

Keywords

Myocardium Heart rhythm Ventricular function Univentricular circulation Heart failure 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

P. Saur und C. Haller geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Alomair M, Morgan C, Al Jughiman M, Caldarone C, Mertens L, Van Arsdell G (2018) Should all patients with congenitally corrected transposition of great arteries undergo anatomic repair? (in submission)Google Scholar
  2. 2.
    Bartelds B, Berger RMF (2014) The right ventricle in congenital heart diseases. In: Gaine SP, Naeije R, Peacock AJ (Hrsg) Right hear. Springer, London, S 131–149CrossRefGoogle Scholar
  3. 3.
    Baumgartner H (2014) Geriatric congenital heart disease: a new challenge in the care of adults with congenital heart disease? Eur Heart J 35:683–685CrossRefGoogle Scholar
  4. 4.
    Van De Bruaene A, Meier L, Droogne W, De Meester P, Troost E, Gewillig M, Budts W (2018) Management of acute heart failure in adult patients with congenital heart disease. Heart Fail Rev 23:1–14CrossRefGoogle Scholar
  5. 5.
    Deutsche Herzstiftung, Deutsche Gesellschaft für Kardiologie, Deutsche Gesellschaft für Thorax-Herz und Gefäßchirurgie, Deutsche Gesellschaft für Pediatrische Kardiologie (2017) Deutscher HerzberichtGoogle Scholar
  6. 6.
    Diller G‑P, Kempny A, Alonso-Gonzalez R, Swan L, Uebing A, Li W, Babu-Narayan S, Wort SJ, Dimopoulos K, Gatzoulis MA (2015) Survival prospects and circumstances of death in contemporary adult congenital heart disease patients under follow-up at a large tertiary centre. Circulation 132:2118–2125CrossRefGoogle Scholar
  7. 7.
    Dobaczewski M, Chen W, Frangogiannis NG (2011) Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol 51:600–606CrossRefGoogle Scholar
  8. 8.
    Duncan BW, Mee RBB (2005) Management of the failing systemic right ventricle. Semin Thorac Cardiovasc Surg 17:160–169CrossRefGoogle Scholar
  9. 9.
    Elmi M, Hickey EJ, Williams WG, Van Arsdell G, Caldarone CA, McCrindle BW (2011) Long-term tricuspid valve function after Norwood operation. J Thorac Cardiovasc Surg 142:1341–1347.e4CrossRefGoogle Scholar
  10. 10.
    Emani SM, Bacha EA, McElhinney DB, Marx GR, Tworetzky W, Pigula FA, del Nido PJ (2009) Primary left ventricular rehabilitation is effective in maintaining two-ventricle physiology in the borderline left heart. J Thorac Cardiovasc Surg 138:1276–1282CrossRefGoogle Scholar
  11. 11.
    Emani SM, McElhinney DB, Tworetzky W, Myers PO, Schroeder B, Zurakowski D, Pigula FA, Marx GR, Lock JE, del Nido PJ (2012) Staged left ventricular recruitment after single-ventricle palliation in patients with borderline left heart hypoplasia. J Am Coll Cardiol 60:1966–1974CrossRefGoogle Scholar
  12. 12.
    Filippov AA, Del Nido PJ, Vasilyev NV (2016) Management of systemic right ventricular failure in patients with congenitally corrected transposition of the great arteries. Circulation 134:1293–1302CrossRefGoogle Scholar
  13. 13.
    Friedberg MK, Redington AN (2014) Right versus left ventricular failure: Differences, similarities, and interactions. Circulation 129:1033–1044CrossRefGoogle Scholar
  14. 14.
    Grothoff M, Hoffmann J, Abdul-Khaliq H, Lehmkuhl L, Dähnert I, Berger F, Mende M, Gutberlet M (2012) Right ventricular hypertrophy after atrial switch operation: Normal adaptation process or risk factor? A cardiac magnetic resonance study. Clin Res Cardiol 101:963–971CrossRefGoogle Scholar
  15. 15.
    Haddad F, Hunt SA, Rosenthal DN, Murphy DJ (2008) Right ventricular function in cardiovascular disease, part I: Anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 117:1436–1448CrossRefGoogle Scholar
  16. 16.
    Haller C, Caldarone CA (2018) Can surgeons preserve right ventricular function in hypoplastic left heart syndrome? In: Right Vent. Physiol. Adapt. Fail. Congenit. Acquir. Hear. Dis. Springer, Cham, S 247–259Google Scholar
  17. 17.
    Haller C, Chetan D, Doyle M, Saedi A, Parker R, Van Arsdell G, Honjo O (2015) Geometry, reintervention, and growth patterns in the reconstructed aortic arch with Interdigitating technique in patients with hypoplastic left heart syndrome and variants. Circulation 132:A19315Google Scholar
  18. 18.
    Haller C, Honjo O, Caldarone CA, Van Arsdell GS (2017) Growing the borderline hypoplastic left ventricle: hybrid approach. Oper Tech Thorac Cardiovasc Surg 21:124–138CrossRefGoogle Scholar
  19. 19.
    Heidenreich PA, Albert NM, Allen LA et al (2013) Forecasting the impact of heart failure in the united states a policy statement from the American Heart Association. Circ Heart Fail 6:606–619CrossRefGoogle Scholar
  20. 20.
    Hsia T‑YY, Cosentino D, Corsini C, Pennati G, Dubini G, Migliavacca F (2011) Use of mathematical modeling to compare and predict hemodynamic effects between hybrid and surgical Norwood palliations for hypoplastic left heart syndrome. Circulation 124:S204–S210CrossRefGoogle Scholar
  21. 21.
    Kirshbom PM, Myung RJ, Simsic JM, Kramer ZB, Leong T, Kogon BE, Kanter KR (2009) One thousand repeat sternotomies for congenital cardiac surgery: risk factors for reentry injury. Ann Thorac Surg 88:158–161CrossRefGoogle Scholar
  22. 22.
    Koyak Z, Achterbergh RCA, de Groot JR, Berger F, Koolbergen DR, Bouma BJ, Lagrand WK, Hazekamp MG, Blom NA, Mulder BJM (2013) Postoperative arrhythmias in adults with congenital heart disease: Incidence and risk factors. Int J Cardiol 169:139–144CrossRefGoogle Scholar
  23. 23.
    Landzberg MJ, Murphy DJ, Davidson WR et al (2001) Task Force 4: organization of delivery systems for adults with congenital heart disease. J Am Coll Cardiol 37:1187–1193CrossRefGoogle Scholar
  24. 24.
    MacNee W (1994) Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part one. Am J Respir Crit Care Med 150:833–852CrossRefGoogle Scholar
  25. 25.
    Mascio CE, Pasquali SK, Jacobs JP, Jacobs ML, Austin EH (2011) Outcomes in adult congenital heart surgery: analysis of the Society of Thoracic Surgeons Database. J Thorac Cardiovasc Surg 142:1090–1097CrossRefGoogle Scholar
  26. 26.
    Maxwell B, Steppan J (2015) Postoperative care of the adult with congenital heart disease. Semin Cardiothorac Vasc Anesth 19:154–162CrossRefGoogle Scholar
  27. 27.
    Naeije R, Badagliacca R (2017) The overloaded right heart and ventricular interdependence. Cardiovasc Res 113:1474–1485CrossRefGoogle Scholar
  28. 28.
    Newburger JW, Sleeper LA, Gaynor JW et al (2018) Transplant-free survival and interventions at 6 years in the single ventricle reconstruction trial. Circulation 137:2246–2253CrossRefGoogle Scholar
  29. 29.
    Piran S, Veldtman G, Siu S, Webb GD, Liu PP (2002) Heart failure and ventricular dysfunction in patients with single or systemic right ventricles. Circulation 105:1189–1194CrossRefGoogle Scholar
  30. 30.
    Putman LM, van Gameren M, Meijboom FJ, de Jong PL, Roos-Hesselink JW, Witsenburg M, Takkenberg JJM, Bogers AJJC (2009) Seventeen years of adult congenital heart surgery: a single centre experience. Eur J Cardio-thoracic Surg 36:96–104CrossRefGoogle Scholar
  31. 31.
    Ramos SR, Pieles G, Sun M, Slorach C, Hui W, Friedberg MK (2018) Early versus late cardiac remodeling during right ventricular pressure load and impact of preventive versus rescue therapy with endothelin-1 receptor blockers. J Appl Physiol 124:1349–1362CrossRefGoogle Scholar
  32. 32.
    Reddy S, Bernstein D (2015) Molecular mechanisms of right ventricular failure. Circulation 132:1734–1742CrossRefGoogle Scholar
  33. 33.
    Sano T, Ousaka D, Goto T, Ishigami S, Hirai K, Kasahara S, Ohtsuki S, Sano S, Oh H (2018) Impact of cardiac progenitor cells on heart failure and survival in single ventricle congenital heart disease. Circ Res 122:994–1005CrossRefGoogle Scholar
  34. 34.
    Sawatani S, Mandell G, Kusaba E, Schraut W, Cascade P, Wajszczuk WJ, Kantrowitz A (1974) Ventricular performance following ablation and prosthetic replacement of right ventricular myocardium. Trans Am Soc Artif Intern Organs 20B:629–636Google Scholar
  35. 35.
    Shah NR, Lam WW, Rodriguez FH, Ermis PR, Simpson L, Frazier OH, Franklin WJ, Parekh DR (2013) Clinical outcomes after ventricular assist device implantation in adults with complex congenital heart disease. J Hear Lung Transplant 32:615–620CrossRefGoogle Scholar
  36. 36.
    Starr I, Neade RH (1943) The absence of conspicuous increments of venous pressure after severe damage to the right ventricle of the dog, with a discussion of the relation between clinical congestive failure and heart disease. Am Heart J 26:291–301CrossRefGoogle Scholar
  37. 37.
    Sutendra G, Dromparis P, Paulin R, Zervopoulos S, Haromy A, Nagendran J, Michelakis ED (2013) A metabolic remodeling in right ventricular hypertrophy is associated with decreased angiogenesis and a transition from a compensated to a decompensated state in pulmonary hypertension. J Mol Med 91:1315–1327CrossRefGoogle Scholar
  38. 38.
    Szymański P, Klisiewicz A, Lubiszewska B, Lipczyńska M, Michałek P, Janas J, Hoffman P (2009) Application of classic heart failure definitions of asymptomatic and symptomatic ventricular dysfunction and heart failure symptoms with preserved ejection fraction to patients with systemic right ventricles. Am J Cardiol 104:414–418CrossRefGoogle Scholar
  39. 39.
    Taylor EN, Hoffman MP, Barefield DY et al (2015) Alterations in multi-scale cardiac architecture in association with phosphorylation of myosin binding protein-C. J Am Heart Assoc 5:1–12Google Scholar
  40. 40.
    Vos T, Flaxman AD, Naghavi M et al (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380:2163–2196CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Kinderklinik für Kardiologie/Angeborene HerzfehlerUniversitätsklinikum HeidelbergHeidelbergDeutschland
  2. 2.Division of Cardiovascular Surgery, The Labatt Family Heart Centre, The Hospital for Sick ChildrenUniversity of TorontoTorontoKanada

Personalised recommendations