Rheologica Acta

, Volume 58, Issue 11–12, pp 719–728 | Cite as

First MnO2-based electrorheological fluids: high response at low filler concentration

  • Alexander V. Agafonov
  • Anton S. Kraev
  • Maria A. Teplonogova
  • Alexander E. BaranchikovEmail author
  • Vladimir K. Ivanov
Original Contribution


Nanoparticles of MnO2 with different shapes (needle-like α-MnO2 and spherical δ-MnO2) were proposed as promising fillers for electrorheological fluids (ERFs). A thorough study of the dielectric properties of α-MnO2 and δ-MnO2 suspensions in silicone oil enabled estimation of the values of their dielectric permittivity and dielectric relaxation times. The study of MnO2-filled materials with various filler contents, and under various electric field strengths, in shear and uniaxial tensile and compressive stress regimes, revealed that needle-like α-MnO2 nanoparticles, in comparison with spherical δ-MnO2 particles, lead to better mechanical properties of the fluids. The most intriguing property of MnO2-based electrorheological fluids is their high electrorheological response at low filler content: ERF containing only 4.5 vol.% of α-MnO2 in silicone oil demonstrated a 18 kPa tensile strength in a 5 kV electric field.


Electrorheologic materials MnO2 polymorphs Dielectric permittivity Dielectric relaxation time Shear stress Tensile stress Compressive stress Filler content 



The X-ray diffraction and electron microscopy measurements were performed using shared experimental facilities supported by the IGIC RAS state assignment.

Funding information

The work was supported by the Russian Science Foundation (grant no. 16-13-10399).

Supplementary material

397_2019_1175_MOESM1_ESM.docx (143 kb)
ESM 1 (DOCX 143 kb)


  1. Agafonov AV, Krayev AS, Davydova OI et al (2016) Nanocrystalline ceria: a novel material for electrorheological fluids. RSC Adv 6:88851–88858. CrossRefGoogle Scholar
  2. Agafonov AV, Davydova OI, Krayev AS et al (2017) Unexpected effects of activator molecules’ polarity on the electroreological activity of titanium dioxide nanopowders. J Phys Chem B 121:6732–6738. CrossRefGoogle Scholar
  3. Agafonov AV, Kraev AS, Ivanova OS, Evdokimova OL, Gerasimova TV, Baranchikov AE, Kozik VV, Ivanov VK (2018) Comparative study of the electrorheological effect in suspensions of needle-like and isotropic cerium dioxide nanoparticles. Rheol Acta 57:307–315. CrossRefGoogle Scholar
  4. Chipara M, French S, Lozano K et al (2011) Electrorheological analysis of colloidal dispersions of aluminum oxide and silicone oil. J Nanosci Nanotechnol 11:6852–6857. CrossRefGoogle Scholar
  5. Cho MS, Cho YH, Choi HJ, Jhon MS (2003) Synthesis and electrorheological characteristics of polyaniline-coated poly(methyl methacrylate) microsphere: size effect. Langmuir 19:5875–5881. CrossRefGoogle Scholar
  6. Choi HJ, Hong CH, Jhon MS (2007) Cole-Cole analysis on dielectric spectra of electrorheological suspensions. Int J Mod Phys B 21:4974–4980. CrossRefGoogle Scholar
  7. Conrad H, Sprecher AF, Choi Y, Chen Y (1991) The temperature dependence of the electrical properties and strength of electrorheological fluids. J Rheol 35:1393–1410. CrossRefGoogle Scholar
  8. Davydova AI, Kraev AS, Redozubov AA et al (2016) Effect of polydimethylsiloxane viscosity on the electrorheological activity of dispersions based on it. Russ J Phys Chem A 90:1269–1273. CrossRefGoogle Scholar
  9. Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112:4406–4417. CrossRefGoogle Scholar
  10. Hao T (1998) The interfacial polarization-induced electrorheological effect. J Colloid Interface Sci 206:240–246. CrossRefGoogle Scholar
  11. Havriliak S, Negami S (1967) A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8:161–210. CrossRefGoogle Scholar
  12. Hong JY, Choi M, Kim C, Jang J (2010) Geometrical study of electrorheological activity with shape-controlled titania-coated silica nanomaterials. J Colloid Interface Sci 347:177–182. CrossRefGoogle Scholar
  13. Hsu YK, Chen YC, Lin YG et al (2012) Birnessite-type manganese oxides nanosheets with hole acceptor assisted photoelectrochemical activity in response to visible light. J Mater Chem 22:2733–2739. CrossRefGoogle Scholar
  14. Hutter K, Ursescu A, van de Ven AAF (2006) Electrorheological fluids. Lect Notes Phys 710:279–366. CrossRefGoogle Scholar
  15. Kim SH, Kim JH, Choi HJ, Park J (2015) Pickering emulsion polymerized poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/polystyrene composite particles and their electric stimuli-response. RSC Adv 5:72387–72393. CrossRefGoogle Scholar
  16. Ko YG, Lee HJ, Chun YJ, Choi US, Yoo KP (2013) Positive and negative electrorheological response of alginate salts dispersed suspensions under electric field. ACS Appl Mater Interfaces 5:1122–1130. CrossRefGoogle Scholar
  17. Korotkov RF, Baranchikov AE, Boytsova OV, Ivanov VK (2015) Synthesis of nanocrystalline birnessite and cryptomelane by microwave hydrothermal treatment. Russ J Inorg Chem 60:1299–1303. CrossRefGoogle Scholar
  18. Kun-Quan L, Rong S, Xue-Zhao W et al (2006) Polar molecule dominated electrorheological effect. Chin Phys 15:2476–2480. CrossRefGoogle Scholar
  19. Kuritka I, Pavlinek V, Sedlacik M et al (2012) Synthesis and electrorheology of rod-like titanium oxide particles prepared via microwave-assisted molten-salt method. Colloid Polym Sci 291:1105–1111. CrossRefGoogle Scholar
  20. Liu YD, Choi HJ (2012) Electrorheological fluids: smart soft matter and characteristics. Soft Matter 8:11961–11978. CrossRefGoogle Scholar
  21. Liu YD, Choi HJ (2013) Electrorheological response of polyaniline and its hybrids. Chem Pap 67:849–859. CrossRefGoogle Scholar
  22. Liu F, Xu G, Wu J et al (2009) Preparation and electrorheological properties of a hydroxyl titanium oxalate suspension. Smart Mater Struct 18:125015. CrossRefGoogle Scholar
  23. Liu YD, Lee BM, Park T-S, Kim JE, Choi HJ, Booh SW (2013) Optically transparent electrorheological fluid with urea-modified silica nanoparticles and its haptic display application. J Colloid Interface Sci 404:56–61. CrossRefGoogle Scholar
  24. Lu K, Shen R, Wang X et al (2007) Polar molecule type electrorheological fluids. Int J Mod Phys B 21:4798–4805. CrossRefGoogle Scholar
  25. Lu XF, Li GR, Tong YX (2015) A review of negative electrode materials for electrochemical supercapacitors. Sci China Technol Sci 58:1799–1808. CrossRefGoogle Scholar
  26. Otsubo Y (1999) Electrorheology of whisker suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 153(1–3):459–466. Scholar
  27. Parker D, Webb SM, Verity R et al (2004) Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Planet Sci 32:287–328. CrossRefGoogle Scholar
  28. Parthasarathy M, Klingenberg DJ (1996) Electrorheology: mechanisms and models. Mater Sci Eng R 17:57–103. CrossRefGoogle Scholar
  29. Post JE, Veblen DR (1990) Crystal structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method. Am Mineral 75:477–489Google Scholar
  30. Qi Y, Wen W (2002) Influences of geometry of particles on electrorheological fluids. J Phys D Appl Phys 35:2231–2235. CrossRefGoogle Scholar
  31. Rossouw M, Liles D, Thackeray M et al (1992) Alpha manganese dioxide for lithium batteries: a structural and electrochemical study. Mater Res Bull 27:221–230. CrossRefGoogle Scholar
  32. Sedlacik M, Mrlik M, Pavlinek V et al (2013) Electrorheological behaviour under oscillatory shear of TiO2 rod-like particles prepared via microwave-assisted molten-salt synthesis. Journal of Physics: Conference Series 412:012002. Scholar
  33. Shen R, Wang X, Lu Y et al (2009) Polar-molecule-dominated electrorheological fluids featuring high yield stresses. Adv Mater. CrossRefGoogle Scholar
  34. Sheng P, Wen W (2011) Electrorheological fluids: mechanisms, dynamics, and microfluidics applications. Annu Rev Fluid Mech 44:143–174. CrossRefGoogle Scholar
  35. Tan P, Tian WJ, Wu XF, Huang JY, Zhou LW, Huang JP (2009) Saturated orientational polarization of polar molecules in giant electrorheological fluids. J Phys Chem B 113:9092–9097. CrossRefGoogle Scholar
  36. Tang X, Wu C, Conrad H (1995) On the conductivity model for the electrorheological response of dielectric particles with a conducting film. J Appl Phys 78:4183–4188. CrossRefGoogle Scholar
  37. Thackeray MM (1997) Manganese oxides for lithium batteries. Prog Solid State Chem 25:1–71. CrossRefGoogle Scholar
  38. Tian Y, Zhu X, Jiang J et al (2010) Structure factor of electrorheological fluids in compressive flow. Smart Mater Struct 19:105024. CrossRefGoogle Scholar
  39. Wang Z, Xuan S, Jiang W, Gong X (2017) The normal stress of an electrorheological fluid in compression mode. RSC Adv 7:25855–25860. CrossRefGoogle Scholar
  40. Wen W, Huang X, Sheng P (2008) Electrorheological fluids: structures and mechanisms. Soft Matter 4:200. CrossRefGoogle Scholar
  41. Winslow WM (1949) Induced fibration of suspensions. J Appl Phys 20:1137–1140. CrossRefGoogle Scholar
  42. Wu J, Jin T, Liu F et al (2014) Preparation of rod-like calcium titanyl oxalate with enhanced electrorheological activity and their morphological effect. J Mater Chem C 2:5629. CrossRefGoogle Scholar
  43. Xiang L, Zhao X, Yin J (2011) Micro/nano-structured montmorillonite/titania particles with high electrorheological activity. Rheol Acta 50:87–95. CrossRefGoogle Scholar
  44. Yin J, Zhao X (2011) Electrorheology of nanofiber suspensions. Nanoscale Res Lett 6:256. CrossRefGoogle Scholar
  45. Yin J, Zhao X, Xiang L et al (2009) Enhanced electrorheology of suspensions containing sea-urchin-like hierarchical Cr-doped titania particles. Soft Matter 5:4687–4697. CrossRefGoogle Scholar
  46. Zong X, Wang L (2014) Ion-exchangeable semiconductor materials for visible light-induced photocatalysis. J Photochem Photobiol C: Photochem Rev 18:32–49. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Alexander V. Agafonov
    • 1
    • 2
  • Anton S. Kraev
    • 1
  • Maria A. Teplonogova
    • 3
    • 4
  • Alexander E. Baranchikov
    • 3
    • 4
    Email author
  • Vladimir K. Ivanov
    • 2
    • 4
  1. 1.Krestov Institute of Solution Chemistry of the Russian Academy of SciencesIvanovoRussia
  2. 2.National Research Tomsk State UniversityTomskRussia
  3. 3.Lomonosov Moscow State UniversityMoscowRussia
  4. 4.Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscowRussia

Personalised recommendations