Advertisement

Rheology of cave sediments: application to vermiculation

  • Perrine Freydier
  • Jérôme Martin
  • Béatrice Guerrier
  • Pierre-Yves Jeannin
  • Frédéric DoumencEmail author
Original Contribution
  • 15 Downloads

Abstract

Several cases of vermiculation formation have been reported in painted caves, with potential issues for the conservation of parietal prehistoric paintings. Vermiculations are natural patterns observed in caves. They result from displacement of sediment initially at rest on cave walls. The collapse of the sediment yield stress, which allows the sediment to flow under small mechanical stresses, could be a necessary first step of the vermiculation process. Two possible scenarios have been identified: (1) when the sediment is soaked in low-mineralized water, a rapid and limited drop of the yield stress is followed by a slow decrease, which can seriously weaken the sediment layer if soaking is continued over several months and (2) a spectacular decrease of the yield stress (two orders of magnitude) when the sediment is soaked within a solution enriched in monovalent cations for weeks and suddenly exposed to low-mineralized water. The specific behavior of smectite clays binding the sediment accounts for this loss of cohesion.

Graphical Abstract

Vermiculations on a wet cave wall

Keywords

Clay Rheology Smectite Vermiculation Cave Yield stress 

Notes

Acknowledgments

This study is part of investigations supported by the French Ministry of Culture, Direction des Affaires Culturelles de Nouvelle-Aquitaine. We want to thank them and their sub-contractants for support and data. In this context, we want to thank more specifically Jean-Christophe Portais and Sandrine Géraud for their help. We gratefully thank A. Aubertin, L. Auffray, J. Amarni, R. Pidoux, and C. Manquest (FAST Laboratory) for technical support. We thank D. Calmels, C. Quantin, G. Monvoisin, O. Dufaure, and S. Miska (GEOPS Laboratory) for chemical analysis and geological characterization of our samples. We thank P. Coussot and A. Fall (from Laboratoire Navier), B. Cabane (from LCMD) and J.B. Salmon (from LOF) for useful discussions.

References

  1. Abend S, Lagaly G (2000) Sol-gel transitions of sodium montmorillonite dispersions. Appl Clay Sci 16 (3):201–227CrossRefGoogle Scholar
  2. Andersson-Sköld Y, Torrance JK, Lind B, Odén K, Stevens RL, Rankka K (2005) Quick clay-a case study of chemical perspective in Southwest Sweden. Eng Geol 82(2):107–118CrossRefGoogle Scholar
  3. Anger R (2011) Approche granulaire et colloïdale du matériau terre pour la construction. Institut National des Sciences Appliquées de Lyon, PhD thesisGoogle Scholar
  4. Aran D, Maul A, Masfaraud J (2008) Surface geosciences (pedology). Comptes rendus - Geoscience 340 (12):865–871CrossRefGoogle Scholar
  5. Bailey L, Lekkerkerker HNW, Maitland GC (2015) Smectite clay - inorganic nanoparticle mixed suspensions: phase behaviour and rheology. Soft Matter 11:222–236CrossRefGoogle Scholar
  6. Barr TC (1957) A possible origin for cave vermiculations. Nat Spelolog Soc News 16(3):34–35Google Scholar
  7. Barton H-A, Northup D-E (2007) Geomicrobiology in cave environments: past, current and future perspectives. J Cave Karst Stud 69(1):163–178Google Scholar
  8. Bini A (1975) Le “vermiculazioni argillose” de la grotta zelbio (2037 loco). Il Grottesco 36:5–14Google Scholar
  9. Bini A, Cavalli Gori M, Gori S (1978) A critical review of hypotheses on the origin of vermiculations. Int J Speleol 10:11–33CrossRefGoogle Scholar
  10. Birgersson M, Börgesson L, Hedström M, Karnland O, Nilsson U (2009) Bentonite erosion. Final report. Technical Report TR-09-34, SKBGoogle Scholar
  11. Birgersson M, Hedström M, Karnland O (2011) Sol formation ability of Ca/Na-montmorillonite at low ionic strength. Phys Chem Earth, Parts A/B/C 36(17):1572–1579. Clays in Natural & Engineered Barriers for Radioactive Waste ConfinementCrossRefGoogle Scholar
  12. Carrière SR, Jongmans D, Chambon G, Bièvre G, Lanson B, Bertello L, Berti M, Jaboyedoff M, Malet J-P, Chambers JE (2018) Rheological properties of clayey soils originating from flow-like landslides. Landslides 15(8):1615–1630CrossRefGoogle Scholar
  13. Clottes J (1981) Midi-Pyrénées. Gallia Préhistoire 24(2):525–570Google Scholar
  14. Coussot P, Ancey C (1999) Rheophysical classification of concentrated suspensions and granular pastes. Phys Rev E 59:4445–4457CrossRefGoogle Scholar
  15. Coussot P, Nguyen QD, Huynh HT, Bonn D (2002) Avalanche behavior in yield stress fluids. Phys Rev Lett 88:175501CrossRefGoogle Scholar
  16. Faucher B, Lauriol B (2016) Les vermiculations de la grotte Wilson (Lac la Pêche, Québec, Canada). Contexte morphoclimatique, analyses sédimentologiques et distribution spatiale. Géomorphologie: relief, processus, environnement 22:96–103CrossRefGoogle Scholar
  17. Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. WileyGoogle Scholar
  18. Gaillardet J, Calmels D, Romero-Mujalli G, Zakharova E, Hartmann J (2018) Global climate control on carbonate weathering intensity. Chemical Geology, in pressGoogle Scholar
  19. Hedström M, Hansen E-E, Nilsson U (2016) Montmorillonite phase behaviour. Relevance for buffer erosion in dilute groundwater. Technical Report TR-15-07, SKBGoogle Scholar
  20. Hoerlé S (2012) État des connaissances et étude minérale des vermiculations de la grotte de Lascaux. Volet 1 - État des connaissances sur les vermiculations. Reports on “Vermiculations in Lascaux cave”, French Ministry of CultureGoogle Scholar
  21. Hœrlé S, Konik S, Chalmin É (2011) Les vermiculations de la grotte de Lascaux : identification de sources de matériaux mobilisables par microanalyses physico-chimiques. Karstologia 58(1):29–40CrossRefGoogle Scholar
  22. Jönsson B, Åkesson T, Jönsson B, Meehdi S, Janiak J, Wallenberg R. (2009) Structure and forces in bentonite MX-80. Technical Report TR-09-06, SKBGoogle Scholar
  23. Khaldoun A, Moller P, Fall A, Wegdam G, De Leeuw B, Méheust Y, Otto Fossum J, Bonn D (2009) Quick clay and landslides of clayey soils. Phys Rev Lett 103:188301CrossRefGoogle Scholar
  24. Konik S, Lafon-Pham D, Riss J, Aujoulat N, Ferrier C, Kervazo B, Plassard F, Reiche I (2014) Étude des vermiculations par caractérisations morphologique, chromatique et chimique. L’exemple des grottes de Rouffignac et de Font-de-Gaume (Dordogne, France). Paleo, Special Issue 311–321Google Scholar
  25. Larson RG (1999). The structure and rheology of complex fluids. Oxford University PressGoogle Scholar
  26. Magnin A, Piau J (1987) Shear rheometry of fluids with a yield stress. J Non-Newtonian Fluid Mech 23:91–106CrossRefGoogle Scholar
  27. Magnin A, Piau J (1990) Cone-and-plate rheometry of yield stress fluids. Study of an aqueous gel. J Non-Newtonian Fluid Mech 36:85–108CrossRefGoogle Scholar
  28. Martel EA (1906) Étude de la source de Fontaine-L’Évêque (Var). Annales d’Hydraulique Agricole 34:374–381Google Scholar
  29. Martin C, Pignon F, Piau J-M, Magnin A, Lindner P, Cabane B (2002) Dissociation of thixotropic clay gels. Phys Rev E 66:021401CrossRefGoogle Scholar
  30. Martin C, Pignon F, Magnin A, Meireles M, Lelièvre V, Lindner P, Cabane B (2006) Osmotic compression and expansion of highly ordered clay dispersions. Langmuir 22(9):4065–4075. PMID: 16618146CrossRefGoogle Scholar
  31. Michot L, Bihannic I, Porsch K, Maddi S, Baravian C, Mougel J, Levitz P (2004) Phase diagrams of Wyoming Na-montmorillonite clay. Influence of particle anisotropy. Langmuir 25(20):10829–10837CrossRefGoogle Scholar
  32. Norrish K (1954) The swelling of montmorillonite. Discuss Faraday Soc 18:120–134CrossRefGoogle Scholar
  33. Ovarlez G, Mahaut F, Deboeuf S, Lenoir N, Hormozi S, Chateau X (2015) Flows of suspensions of particles in yield stress fluids. J Rheol 59:1449–1486CrossRefGoogle Scholar
  34. Plummer L-N, Wigley T-M-L (1976) The dissolution of calcite in CO2-saturated solutions at 25 C and 1 atmosphere total pressure. Geochim Cosmochim Acta 40(2):191–202CrossRefGoogle Scholar
  35. Reddy K, Lindsay W, Workman S, Drever J (1990) Measurement of calcite ion activity products in soils. Soil Sci Soc Am J 54:67–71CrossRefGoogle Scholar
  36. Rosenqvist I (1966) Norwegian research into the properties of quick clay-a review. Eng Geol 1(6):445–450CrossRefGoogle Scholar
  37. Secor R, Radke C (1985) Spillover of the diffuse double layer on montmorillonite particles. J Colloid Interface Sci 103(1):237–244CrossRefGoogle Scholar
  38. Segad M, Jönsson B, Åkesson T, Cabane B (2010) Ca/Na montmorillonite: structure, forces and swelling properties. Langmuir 26(8):5782–5790. PMID: 20235552CrossRefGoogle Scholar
  39. White W (2015) Chemistry and karst. Acta Carsologica 44(3):349–362Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Perrine Freydier
    • 1
  • Jérôme Martin
    • 1
  • Béatrice Guerrier
    • 1
  • Pierre-Yves Jeannin
    • 2
  • Frédéric Doumenc
    • 1
    • 3
    Email author
  1. 1.Laboratoire FAST, Université Paris-Sud, CNRSUniversité Paris-SaclayOrsayFrance
  2. 2.Swiss Institute for Speleology and Karstology (SISKA)La Chaux-de-FondsSwitzerland
  3. 3.Sorbonne UniversitéParis Cedex 05France

Personalised recommendations