Advertisement

Rheologica Acta

, Volume 58, Issue 9, pp 619–637 | Cite as

A high-frequency piezoelectric rheometer with validation of the loss angle measuring loop: application to polymer melts and colloidal glasses

  • Thanasis Athanasiou
  • Gunter K. Auernhammer
  • Dimitris Vlassopoulos
  • George PetekidisEmail author
Original Contribution
  • 72 Downloads

Abstract

We revisit and improve the technique of piezo-operated sliding-plate rheometry in order to provide a versatile platform for measuring the linear viscoelastic properties of various soft matter systems at frequencies from 10 to 1.000 Hz. The sensitive loss angle measuring loop is validated explicitly against reference data from entangled amorphous polymer melts obtained with conventional rotational rheometers by means of time-temperature superposition (tTS). Frequency range limiting factors such as sample and tool inertia are discussed while errors are traced and theoretical correction is shown to be feasible when strong nonlinear behavior of the measuring cell is present. This gives confidence in measuring more complex systems where tTS does not apply. We also demonstrate the ability to probe the short-time dynamics of hard-sphere colloidal glasses. Important high-frequency features such as the behavior of the elastic modulus, G′, the moduli crossover frequency fc related to β-relaxation, and the associated limiting in-phase (with strain-rate), dynamic viscosity η′, are captured. This validates the suitability of this high-frequency rheometric technique to provide insights into interactions at nanometric particle separations.

Keywords

High-frequency rheometry Polymer melt Colloidal glass Time-temperature superposition Viscoelasticity Piezo rheometer 

Notes

Acknowledgements

We thank A. B. Schofield for providing the PMMA particles, N. Hadjichristidis and H. Iatrou for providing and performing molecular characterization of the linear PBD samples, respectively, and D. Papazoglou, B. Schroyen, and J. Vermant for stimulating discussions. We acknowledge the contributions of D. Parisi, S. Costanzo, A. Mavromanolakis, and A. R. Jacob.

Funding information

This study was financially supported by the EU (Horizon 2020 EUSMI GA731019).

References

  1. Baeza GP, Dessi C, Costanzo S, Zhao D, Gong S, Alegria A, Colby RH, Rubinstein M, Vlassopoulos D, Kumar SK (2016) Network dynamics in nanofilled polymers. Nat Commun 7:11368Google Scholar
  2. Ballesta P, Petekidis G (2016) Creep and aging of hard-sphere glasses under constant stress. Phys Rev E 93:042613.  https://doi.org/10.1103/PhysRevE.93.042613 Google Scholar
  3. Banchio AJ, Nägele G (2008) Short-time transport properties in dense suspensions: from neutral to charge-stabilized colloidal spheres. J Chem Phys 128(10):104903Google Scholar
  4. Bard AJ (1980) LR Faulkner electrochemical methods. Wiley, New YorkGoogle Scholar
  5. Bartolino R, Durand G (1977) Plasticity in a smectic-liquid crystal. Phys Rev Lett 39(21):1346–1349.  https://doi.org/10.1103/PhysRevLett.39.1346 Google Scholar
  6. Bharadwaj NA, Ewoldt RH (2015) Single-point parallel disk correction for asymptotically nonlinear oscillatory shear. Rheol Acta 54(3):223–233Google Scholar
  7. Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. Volume 1: fluid mechanics. A Wiley-Interscience Publication, John Wiley & SonsGoogle Scholar
  8. Booij H, Thoone G (1982) Generalization of Kramers-Kronig transforms and some approximations of relations between viscoelastic quantities. Rheol Acta 21(1):15–24Google Scholar
  9. Bouzid M, Keshavarz B, Geri M, Divoux T, Del Gado E, McKinley GH (2018) Computing the linear viscoelastic properties of soft gels using an optimally windowed chirp protocol. J Rheol 62(4):1037–1050Google Scholar
  10. Brack T, Bolisetty S, Dual J (2018) Simultaneous and continuous measurement of shear elasticity and viscosity of liquids at multiple discrete frequencies. Rheol Acta 57(5):415–428Google Scholar
  11. Brady JF (1993) The rheological behavior of concentrated colloidal dispersions. J Chem Phys 99(1):567–581.  https://doi.org/10.1063/1.465782 Google Scholar
  12. Brather A (1978) Numerisch einfache Beziehungen zwischen Verlust-und Speicherkomponente des dynamischen Schermoduls und der dynamischen Nachgiebigkeit. Rheol Acta 17(4):325–341Google Scholar
  13. Bryant M, Keltie R (1986) A characterization of the linear and non-linear dynamic performance of a practical piezoelectric actuator part 1: measurements. Sensors Actuators 9(2):95–103Google Scholar
  14. Bryant G, Williams SR, Qian L, Snook IK, Perez E, Pincet F (2002) How hard is a colloidal “hard-sphere” interaction? Phys Rev E Stat Nonlinear Soft Matter Phys 66(6 Pt 1):060501.  https://doi.org/10.1103/PhysRevE.66.060501 Google Scholar
  15. Cheng Z, Zhu J, Chaikin PM, Phan SE, Russel WB (2002) Nature of the divergence in low shear viscosity of colloidal hard-sphere dispersions. Phys Rev E Stat Nonlinear Soft Matter Phys 65(4 Pt 1):041405.  https://doi.org/10.1103/PhysRevE.65.041405 Google Scholar
  16. Colby RH (1989) Breakdown of time-temperature superposition in miscible polymer blends. Polymer 30(7):1275–1278Google Scholar
  17. Colby RH, Fetters LJ, Graessley WW (1987) The melt viscosity-molecular weight relationship for linear polymers. Macromolecules 20(9):2226–2237Google Scholar
  18. Colby RH, Fetters LJ, Funk WG, Graessley WW (1991) Effects of concentration and thermodynamic interaction on the viscoelastic properties of polymer solutions. Macromolecules 24(13):3873–3882Google Scholar
  19. Collin D, Martinoty P (2003) Dynamic macroscopic heterogeneities in a flexible linear polymer melt. Physica A: Statistical Mechanics and its Applications 320:235–248Google Scholar
  20. Cooper J, Henry F, Reiss EL (1966) Reflection of plane viscoelastic waves from plane boundaries. The Journal of the Acoustical Society of America 39(6):1133–1138Google Scholar
  21. Dealy J, Giacomin A (1998) Sliding plate and sliding cylinder rheometers Rheological Measurement (pp. 237-259): SpringerGoogle Scholar
  22. Dealy J, Plazek D (2009) Time-temperature superposition—a users guide. Rheol Bull 78(2):16–31Google Scholar
  23. Dhont JK, Wagner NJ (2001) Superposition rheology. Phys Rev E 63(2):021406Google Scholar
  24. Doi M, Edwards SF (1988) The theory of polymer dynamics (Vol. 73): oxford university pressGoogle Scholar
  25. El Rifai OM, Youcef-Toumi K (2004) Modeling of piezoelectric tube actuatorsGoogle Scholar
  26. Erwin BM, Rogers SA, Cloitre M, Vlassopoulos D (2010) Examining the validity of strain-rate frequency superposition when measuring the linear viscoelastic properties of soft materials. J Rheol 54(2):187–195Google Scholar
  27. Ewing MW (1957) Elastic waves in layered media: McGraw-HillGoogle Scholar
  28. Ferry JD (1980) Viscoelastic properties of polymers: John Wiley & SonsGoogle Scholar
  29. Franck A (2005) Understanding instrument inertia corrections in oscillation. TA InstrumentGoogle Scholar
  30. Fritz G, Maranzano B, Wagner N, Willenbacher N (2002) High frequency rheology of hard sphere colloidal dispersions measured with a torsional resonator. J Non-Newtonian Fluid Mech 102(2):149–156Google Scholar
  31. Fritz G, Pechhold W, Willenbacher N, Wagner NJ (2003) Characterizing complex fluids with high frequency rheology using torsional resonators at multiple frequencies. J Rheol 47(2):303–319.  https://doi.org/10.1122/1.1538608 Google Scholar
  32. Gallani J, Hilliou L, Martinoty P, Keller P (1994) Abnormal viscoelastic behavior of side-chain liquid-crystal polymers. Phys Rev Lett 72(13):2109–2112Google Scholar
  33. Gautschi G (2002) Piezoelectric sensors Piezoelectric Sensorics (pp. 73-91): SpringerGoogle Scholar
  34. Ghiringhelli E, Roux D, Bleses D, Galliard H, Caton F (2012) Optimal fourier rheometry. Rheol Acta 51(5):413–420Google Scholar
  35. Gold B, Pyckhout-Hintzen W, Wischnewski A, Radulescu A, Monkenbusch M, Allgaier J et al (2019) Direct assessment of tube dilation in entangled polymers. Phys Rev Lett 122(8):088001Google Scholar
  36. Goldfarb M, Celanovic N (1997) Modeling piezoelectric stack actuators for control of micromanipulation. IEEE Control Syst 17(3):69–79Google Scholar
  37. Gotze W, Sjogren L (1992) Relaxation processes in supercooled liquids. Rep Prog Phys 55(3):241–376Google Scholar
  38. Gozen BA, Ozdoganlar OB (2012) A method for open-loop control of dynamic motions of piezo-stack actuators. Sensors Actuators A Phys 184:160–172Google Scholar
  39. Graessley WW (2008) Polymeric liquids and networks: dynamics and rheology: Garland ScienceGoogle Scholar
  40. Hall R, Kang B-G, Lee S, Chang T, Venerus DC, Hadjichristidis N, … Larson RG (2019) Determining the dilution exponent for entangled 1, 4-polybutadienes using blends of near-monodisperse star with unentangled, low molecular weight linear polymers. MacromoleculesGoogle Scholar
  41. Hecksher T, Torchinsky DH, Klieber C, Johnson JA, Dyre JC, Nelson KA (2017) Toward broadband mechanical spectroscopy. Proc Natl Acad Sci U S A 114(33):8710–8715.  https://doi.org/10.1073/pnas.1707251114 Google Scholar
  42. Hopkins CC, de Bruyn JR (2016) Vibrating wire rheometry. J Non-Newtonian Fluid Mech 238:205–211Google Scholar
  43. Huang Q, Mednova O, Rasmussen HK, Alvarez NJ, Skov AL, Almdal K, Hassager O (2013) Concentrated polymer solutions are different from melts: role of entanglement molecular weight. Macromolecules 46(12):5026–5035.  https://doi.org/10.1021/ma4008434 Google Scholar
  44. Hudson R, Holder A, Hawkins K, Williams P, Curtis D (2017) An enhanced rheometer inertia correction procedure (ERIC) for the study of gelling systems using combined motor-transducer rheometers. Phys Fluids 29(12):121602Google Scholar
  45. Ikeda A, Berthier L, Sollich P (2013) Disentangling glass and jamming physics in the rheology of soft materials. Soft Matter 9(32):7669.  https://doi.org/10.1039/c3sm50503k Google Scholar
  46. Kapnistos M, Vlassopoulos D, Roovers J, Leal L (2005) Linear rheology of architecturally complex macromolecules: comb polymers with linear backbones. Macromolecules 38(18):7852–7862Google Scholar
  47. Kibble TW, Berkshire FH (2004) Classical mechanics: world scientific publishing companyGoogle Scholar
  48. Kim SA, Mangal R, Archer LA (2015) Relaxation dynamics of nanoparticle-tethered polymer chains. Macromolecules 48(17):6280–6293Google Scholar
  49. Kirschenmann L, Pechhold W (2002) Piezoelectric rotary vibrator (PRV) – a new oscillating rheometer for linear viscoelasticity. Rheol Acta 41(4):362–368.  https://doi.org/10.1007/s00397-002-0229-z Google Scholar
  50. Koumakis N, Pamvouxoglou A, Poulos AS, Petekidis G (2012) Direct comparison of the rheology of model hard and soft particle glasses. Soft Matter 8(15):4271.  https://doi.org/10.1039/c2sm07113d Google Scholar
  51. Kramers HA (1927) La diffusion de la lumiere par les atomes. Paper presented at the Atti Cong. Intern. Fisica (Transactions of Volta Centenary Congress) ComoGoogle Scholar
  52. Kremer F, Schönhals A (2012) Broadband dielectric spectroscopy: Springer Science & Business MediaGoogle Scholar
  53. Kronig RDL (1926) On the theory of dispersion of x-rays. Josa 12(6):547–557Google Scholar
  54. Läuger J, Stettin H (2016) Effects of instrument and fluid inertia in oscillatory shear in rotational rheometers. J Rheol 60(3):393–406.  https://doi.org/10.1122/1.4944512 Google Scholar
  55. Likhtman AE, McLeish TC (2002) Quantitative theory for linear dynamics of linear entangled polymers. Macromolecules 35(16):6332–6343Google Scholar
  56. Lionberger RA, Russel WB (1994) High frequency modulus of hard sphere colloids. J Rheol 38(6):1885–1908.  https://doi.org/10.1122/1.550530 Google Scholar
  57. Lionberger RA, Russel W (2000) Microscopic theories of the rheology of stable colloidal dispersions. Adv Chem Phys 111:399–474Google Scholar
  58. Liu C, He J, Ruymbeke E v, Keunings R, Bailly C (2006) Evaluation of different methods for the determination of the plateau modulus and the entanglement molecular weight. Polymer 47(13):4461–4479.  https://doi.org/10.1016/j.polymer.2006.04.054 Google Scholar
  59. Mackay M, Cathey C (1991) A device to measure the dynamic shear properties of small samples. J Rheol 35(2):237–256Google Scholar
  60. Macosko CW (1994) Rheology: principles, measurements, and applications: Wiley-vchGoogle Scholar
  61. Mason TG (2000) Estimating the viscoelastic moduli of complex fluids using the generalized stokes–Einstein equation. Rheol Acta 39(4):371–378Google Scholar
  62. Mason TG, Weitz DA (1995) Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition. Phys Rev Lett 75(14):2770–2773.  https://doi.org/10.1103/PhysRevLett.75.2770 Google Scholar
  63. Mattarelli M, Montagna M, Still T, Schneider D, Fytas G (2012) Vibration spectroscopy of weakly interacting mesoscopic colloids. Soft Matter 8(15):4235.  https://doi.org/10.1039/c2sm07034k Google Scholar
  64. McKenna GB (2006) Commentary on rheology of polymers in narrow gaps. Eur Phys J E Soft Matter 19(1):101–108; discussion 109-111.  https://doi.org/10.1140/epje/e2006-00001-0 Google Scholar
  65. Mewis J, Haene P (1993) Prediction of rheological properties in polymer colloids. Paper presented at the Macromolecular SymposiaGoogle Scholar
  66. Mewis J, Wagner NJ (2012) Colloidal suspension rheology. Cambridge University Press, CambridgeGoogle Scholar
  67. Morrison R (1967) Grounding and shielding techniques in instrumentation. Wiley, New York, p 1967Google Scholar
  68. Müller G, Weber M, Rümpker G, Gajewski D (2007) Theory of elastic waves: GeoforschungszentrumGoogle Scholar
  69. Nemirovsky Y, Nemirovsky A, Muralt P, Setter N (1996) Design of novel thin-film piezoelectric accelerometer. Sensors Actuators A Phys 56(3):239–249Google Scholar
  70. Nommensen P, Duits MH, Van den Ende D, Mellema J (2000) Elastic modulus at high frequency of polymerically stabilized suspensions. Langmuir 16(4):1902–1909Google Scholar
  71. Parot JM, Duperray B (2007) Applications of exact causality relationships to materials dynamic analysis. Mech Mater 39(5):419–433.  https://doi.org/10.1016/j.mechmat.2006.07.004 Google Scholar
  72. Pham K, Petekidis G, Vlassopoulos D, Egelhaaf S, Poon W, Pusey P (2008) Yielding behavior of repulsion-and attraction-dominated colloidal glasses. J Rheol 52(2):649–676Google Scholar
  73. Phillips R, Brady J, Bossis G (1988) Hydrodynamic transport properties of hard-sphere dispersions. I Suspensions of freely mobile particles. Phys Fluids 31(12):3462–3472Google Scholar
  74. Plazek DJ (1996) 1995 Bingham Medal Address: oh, thermorheological simplicity, wherefore art thou? J Rheol 40(6):987–1014.  https://doi.org/10.1122/1.550776 Google Scholar
  75. Poon WC, Weeks ER, Royall CP (2012) On measuring colloidal volume fractions. Soft Matter 8(1):21–30Google Scholar
  76. Preumont A (2006) Mechatronics: SpringerGoogle Scholar
  77. Pritz T (2005) Unbounded complex modulus of viscoelastic materials and the Kramers–Kronig relations. J Sound Vib 279(3–5):687–697Google Scholar
  78. Pusey P (1991) Colloidal suspensions in liquids, freezing, and the glass transition: les HouchesGoogle Scholar
  79. Pusey P (2008) Colloidal glasses. J Phys Condens Matter 20(49):494202Google Scholar
  80. Rosedale J, Bates FS (1990) Rheology of ordered and disordered symmetric poly (ethylenepropylene)-poly (ethylethylene) diblock copolymers. Macromolecules 23(8):2329–2338Google Scholar
  81. Roth M, D’Acunzi M, Vollmer D, Auernhammer GK (2010) Viscoelastic rheology of colloid-liquid crystal composites. J Chem Phys 132(12):124702Google Scholar
  82. Rouleau L, Deü JF, Legay A, Le Lay F (2013) Application of Kramers–Kronig relations to time–temperature superposition for viscoelastic materials. Mech Mater 65:66–75.  https://doi.org/10.1016/j.mechmat.2013.06.001 Google Scholar
  83. Royall CP, Poon WCK, Weeks ER (2013) In search of colloidal hard spheres. Soft Matter 9(1):17–27.  https://doi.org/10.1039/c2sm26245b Google Scholar
  84. Rubinstein M, Colby RH (2003) Polymer physics (Vol. 23). Oxford University Press, New YorkGoogle Scholar
  85. Sánchez AM, Prieto R, Laso M, Riesgo T (2008) A piezoelectric minirheometer for measuring the viscosity of polymer microsamples. IEEE Trans Ind Electron 55(1):427–436Google Scholar
  86. Schaertl W, Sillescu H (1994) Brownian dynamics of polydisperse colloidal hard spheres: equilibrium structures and random close packings. J Stat Phys 77(5–6):1007–1025Google Scholar
  87. Schrag JL (1977) Deviation of velocity gradient profiles from the “gap loading” and “surface loading” limits in dynamic simple shear experiments. Trans Soc Rheol 21(3):399–413Google Scholar
  88. Schrag J, Guess J, Thurston G (1965) Shear-wave interference observed by optical birefringence induced in a viscoelastic liquid. J Appl Phys 36(6):1996–2000Google Scholar
  89. Schroyen B (2018) Bulk rheometry at high frequencies: a review of experimental approaches. In preparationGoogle Scholar
  90. Schroyen B, Swan JW, Van Puyvelde P, Vermant J (2017) Quantifying the dispersion quality of partially aggregated colloidal dispersions by high frequency rheology. Soft Matter 13(43):7897–7906Google Scholar
  91. Schroyen B, Hsu C-P, Isa L, Van Puyvelde P, Vermant J (2019) Stress contributions in colloidal suspensions: the smooth, the rough, and the hairy. Phys Rev Lett 122(21):218001Google Scholar
  92. Shikata T, Pearson DS (1994) Viscoelastic behavior of concentrated spherical suspensions. J Rheol 38(3):601–616.  https://doi.org/10.1122/1.550477 Google Scholar
  93. Sierou A, Brady JF (2001) Accelerated Stokesian dynamics simulations. J Fluid Mech 448. doi:  https://doi.org/10.1017/s0022112001005912
  94. Simon SL, Mckenna GB, Sindt O (2000) Modeling the evolution of the dynamic mechanical properties of a commercial epoxy during cure after gelation. J Appl Polym Sci 76(4):495–508Google Scholar
  95. Sirohi J, Chopra I (2000) Fundamental understanding of piezoelectric strain sensors. J Intell Mater Syst Struct 11(4):246–257Google Scholar
  96. Sternstein S (1983) Transient and dynamic characterization of viscoelastic solids: ACS publicationsGoogle Scholar
  97. Stettin H (2016) Resonances in oscillatory rheometry. Appl Rheol 26(2):31–42Google Scholar
  98. Szántó L, Vogt R, Meier J, Auhl D, Van Ruymbeke E, Friedrich C (2017) Entanglement relaxation time of polyethylene melts from high-frequency rheometry in the mega-hertz range a. J Rheol 61(5):1023–1033Google Scholar
  99. Vaikuntanathan S, Jarzynski C (2009) Dissipation and lag in irreversible processes. EPL (Europhysics Letters) 87(6):60005Google Scholar
  100. Van Ruymbeke E, Masubuchi Y, Watanabe H (2012) Effective value of the dynamic dilution exponent in bidisperse linear polymers: from 1 to 4/3. Macromolecules 45(4):2085–2098Google Scholar
  101. Velankar S, Giles D (2007) How do I know if my phase angles are correct? Rheol. Bull, 76(8)Google Scholar
  102. Vermant J, Moldenaers P, Mewis J, Ellis M, Garritano R (1997) Orthogonal superposition measurements using a rheometer equipped with a force rebalanced transducer. Rev Sci Instrum 68(11):4090–4096Google Scholar
  103. Vleminckx G, Clasen C (2014) The dark side of microrheology: non-optical techniques. Curr Opin Colloid Interface Sci 19(6):503–513.  https://doi.org/10.1016/j.cocis.2014.11.002 Google Scholar
  104. Walsh D, Zoller P (1995) Standard pressure volume temperature data for polymers: CRC pressGoogle Scholar
  105. Wang Y-Z, Wang G-H, Xiong X-M, Wang B, Zhang L-M, Zhang J-X (2010) Viscoelastic measurement of complex fluids using forced oscillating torsion resonator with continuously varying frequency capability. Rheol Acta 49(11–12):1117–1126.  https://doi.org/10.1007/s00397-010-0484-3 Google Scholar
  106. Wang G, Chen G, Bai F (2015) High-speed and precision control of a piezoelectric positioner with hysteresis, resonance and disturbance compensation. Microsyst Technol 22(10):2499–2509.  https://doi.org/10.1007/s00542-015-2638-9 Google Scholar
  107. Wen YH, Schaefer JL, Archer LA (2015) Dynamics and rheology of soft colloidal glasses. ACS Macro Lett 4(1):119–123.  https://doi.org/10.1021/mz5006662 Google Scholar
  108. Willenbacher N, Oelschlaeger C (2007) Dynamics and structure of complex fluids from high frequency mechanical and optical rheometry. Curr Opin Colloid Interface Sci 12(1):43–49.  https://doi.org/10.1016/j.cocis.2007.03.004 Google Scholar
  109. Winter HH (1997) Analysis of dynamic mechanical data: inversion into a relaxation time spectrum and consistency check. J Non-Newtonian Fluid Mech 68(2–3):225–239Google Scholar
  110. Yamamoto J, Okano K (1991) Anomalous hydrodynamic behaviors of smectic liquid crystals at low frequencies. Jpn J Appl Phys 30(4R):754–763Google Scholar
  111. Yamamoto J, Nakamura H, Okano K (1987) Apparatus for measurement of complex shear modulus of liquid crystals at low frequencies. Jpn J Appl Phys 26(S1):29Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Thanasis Athanasiou
    • 1
    • 2
  • Gunter K. Auernhammer
    • 3
    • 4
  • Dimitris Vlassopoulos
    • 1
    • 2
  • George Petekidis
    • 1
    • 2
    Email author
  1. 1.Institute of Electronic Structure & LaserFORTHHeraklionGreece
  2. 2.Department of Materials Science and TechnologyUniversity of CreteHeraklionGreece
  3. 3.Max-Planck-Institute for Polymer ResearchMainzGermany
  4. 4.Leibniz Institute of Polymer ResearchDresdenGermany

Personalised recommendations