On the universality in the extensional rheology of monodisperse polymer melts and oligomer dilutions thereof

  • Henrik Koblitz RasmussenEmail author
  • Sara Lindeblad Wingstrand
  • Ole Hassager
Original Contribution


The startup and steady extensional viscosities were measured on two narrow molar mass distributed (NMMD) poly(methyl methacrylates) (PMMA) diluted in 57% 2.1 kg/mole oligomer methyl methacrylates. The oligomer is short enough to be random configured and un-entangled though it is still a Kuhn chain. The weight-based average molecular weights of the PMMAs are 86 kg/mole and 270 kg/mole with polydispersites of 1.08 and 1.09 respectively. The extensional viscosities were in theoretical agreement with a constant ‘interchain pressure’ model, representing the maximal level of strain hardening in a Kuhn fluid. This has been observed for similar (styrene) oligomer diluted NMMD polystyrenes before, when the styrene oligomers were Kuhn chains. The original ‘interchain pressure’ model by Marrucci and Ianniruberto (Macromolecules 37(10):3934–3942, 2004), represents the minimal level of strain hardening in a Kuhn fluid. It has been shown previously to predict the extensional viscosities of NMMD polystyrene melts, and it is also in agreement with the extensional viscosities of the 86 kg/mole NMMD PMMA melt as well.


Poly(methyl methacrylates) Monodisperse polymer melts Oligomer dilutions Extensional rheology Interchain pressure 


Funding information

This work is supported by the Independent research fund Denmark, grant no. 8022-00042B.


  1. Andreev M, Khaliullin RN, Steenbakkers RJA, Schieber JD (2013) Approximations of the discrete slip-link model and their effect on nonlinear rheology predictions. J Rheol 57(2):535–557CrossRefGoogle Scholar
  2. Bach A, Almdal K, Rasmussen HK, Hassager O (2003a) Elongational viscosity of narrow molar mass distribution polystyrene. Macromolecules 36(14):5174–5179Google Scholar
  3. Bach A, Rasmussen HK, Hassager O (2003b) Extensional viscosity for polymer melts measured in the filament stretching rheometer. J Rheol 47(2):429–441Google Scholar
  4. Baumgaertel M, Schausberger A, Winter HH (1990) The relaxation of polymers with linear flexible chains of uniform length. Rheol Acta 29(5):400–408CrossRefGoogle Scholar
  5. Baumgaertel M, Winter HH (1992) Interrelation between continuous and discrete relaxation time spectra. J Non-Newtonian Fluid Mech 44(1):15–36CrossRefGoogle Scholar
  6. Bhattacharjee PK, Oberhauser JP, McKinley GH, Leal LG, Sridhar T (2002) Extensional rheometry of entangled solutions. Macromolecules 35(27):10131–10148CrossRefGoogle Scholar
  7. Cohen A (1991) A Padé approximant to the inverse Langevin function. Rheol Acta 30(3):270–273CrossRefGoogle Scholar
  8. Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems. III. Constitutive equation. Journal of the Chemical Society, Faraday Transactions II 74(1):1818–1832CrossRefGoogle Scholar
  9. Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon Press, OxfordGoogle Scholar
  10. Fetters LJ, Lohse DJ, Colby RH (2007) Chain dimensions and entanglement spacing. Physical Properties of Polymers Handbook 5(2):447–454CrossRefGoogle Scholar
  11. Huang Q, Mednova O, Rasmussen HK, Alvarez NJ, Skov AL, Almdal K, Hassager O (2013) Concentrated polymer solutions are different from melts: role of entanglement molecular weight. Macromolecules 46 (12):5026–5035CrossRefGoogle Scholar
  12. Huang Q, Rasmussen HK (2017) The transition between undiluted and oligomer-diluted states of nearly monodisperse polystyrenes in extensional flow. Rheol Acta 56(9):719–727CrossRefGoogle Scholar
  13. Ianniruberto G, Brasiello A, Marrucci G (2012) Simulations of fast shear flows of PS oligomers confirm monomeric friction reduction in fast elongational flows of monodisperse PS melts as indicated by rheooptical data. Macromolecules 45(19):8058–8066CrossRefGoogle Scholar
  14. Luap C, Müller C, Schweizer T, Venerus DC (2005) Simultaneous stress and birefringence measurements during uniaxial elongation of polystyrene melts with narrow molecular weight distribution. Rheol Acta 45(1):83–91CrossRefGoogle Scholar
  15. Marin JMR, Huusom JK, Alvarez NJ, Huang Q, Rasmussen HK, Bach A, Skov AL, Hassager O (2013) A control scheme for filament stretching rheometers with application to polymer melts. J Non-Newtonian Fluid Mech 194(1):14–22CrossRefGoogle Scholar
  16. Marrucci G, de Cindio B (1980) The stress relaxation of molten PMMA at large deformations and its theoretical interpretation. Rheol Acta 19(1):68–75CrossRefGoogle Scholar
  17. Marrucci G, Grizzuti N (1988) Fast flows of concentrated polymers - predictions of the tube model on chain stretching. Gazzetta Chimica Italiana 118(3):179–185Google Scholar
  18. Marrucci G, Ianniruberto G (2004) Interchain pressure effect in extensional flows of entangled polymer melts. Macromolecules 37(10):3934–3942CrossRefGoogle Scholar
  19. Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol Acta 33(1):1–21CrossRefGoogle Scholar
  20. Menezes EV, Graessley WW (1982) Nonlinear rheological behavior of polymer systems for several shear-flow histories. Journal of Polymer Science part B - Polymer Physics 20(10):1817–1833CrossRefGoogle Scholar
  21. Morelly SL, Palmese L, Watanabe H, Alvarez NJ (2019) Effect of finite extensibility on nonlinear extensional rheology of polymer melts. Macromolecules 52(3):915–922CrossRefGoogle Scholar
  22. Nielsen JK, Hassager O, Rasmussen HK, McKinley GH (2009) Observing the chain stretch transition in a highly entangled polyisoprene melt using transient extensional rheometry. J Rheol 53(6):1327–1346CrossRefGoogle Scholar
  23. Osaki K, Inoue T, Isomura T (2000) Stress overshoot of polymer solutions at high rates of shear. Journal of Polymer Science part B - Polymer Physics 38(14):1917–1925CrossRefGoogle Scholar
  24. Park J, Mead DW, Denn MM (2012) Stochastic simulation of entangled polymeric liquids in fast flows: microstructure modification. J Rheol 56(5):1057–1081CrossRefGoogle Scholar
  25. Rasmussen HK (2015) Interchain tube pressure effect in the flow dynamics of bi-disperse polymer melts. Rheol Acta 54(1):9–18CrossRefGoogle Scholar
  26. Rasmussen HK (2016) A constitutive analysis of the extensional flows of nearly monodisperse polyisoprene melts. Polymer 104(1):251–257CrossRefGoogle Scholar
  27. Rasmussen HK, Bejenariu AG, Hassager O, Auhl D (2010) Experimental evaluation of the pure configurational stress assumption in the flow dynamics of entangled polymer melts. J Rheol 54(6):1325–1336CrossRefGoogle Scholar
  28. Rasmussen HK, Christensen JH, Gttsche SJ (2000) Inflation of polymer melts into elliptic and circular cylinders. J Non-Newtonian Fluid Mech 93(2-3):245–263CrossRefGoogle Scholar
  29. Rasmussen HK, Huang Q (2014) Interchain tube pressure effect in extensional flows of oligomer diluted nearly monodisperse polystyrene melts. Rheol Acta 53(3):199–208CrossRefGoogle Scholar
  30. Rasmussen HK, Huang Q (2017) Constant interchain pressure effect in extensional flows of oligomer diluted polystyrene and poly(methyl methacrylate) melts. Rheol Acta 56(1):27–34CrossRefGoogle Scholar
  31. Sridhar T, Acharya M, Nguyen DA, Bhattacharjee PK (2014) On the extensional rheology of polymer melts and concentrated solutions. Macromolecules 47(1):379–386CrossRefGoogle Scholar
  32. Sridhar T, Tirtaatmadja V, Nguyen DA, Gupta RK (1991) Measurement of extensional viscosity of polymer solutions. J Non-Newtonian Fluid Mech 40(3):271–280CrossRefGoogle Scholar
  33. Takahashi M, Isaki T, Takigawa T, Masuda T (1993) Measurement of biaxial and uniaxial extensional flow behavior of polymer melts at constant strain rates. J Rheol 37(5):827–846CrossRefGoogle Scholar
  34. Urakawa O, Takahashi M, Masuda T, Golshan Ebrahimi N (1995) Damping functions and chain relaxation in uniaxial and biaxial extensions: comparison with the Doi-Edwards theory. Macromolecules 28(21):7196–7201CrossRefGoogle Scholar
  35. Vinogradov GV, Malkin AY, Volosevitch VV, Shatalov VP, Yudin VP (1975) Flow, high-elastic (recoverable) deformation, and rupture of uncured high molecular weight linear polymers in uniaxial extension. J Polym Sci Polym Phys Ed 13(9):1721–1735CrossRefGoogle Scholar
  36. Wagner MH (2014) Scaling relations for elongational flow of polystyrene melts and concentrated solutions of polystyrene in oligomeric styrene. Rheol Acta 53(10-11):765–777CrossRefGoogle Scholar
  37. Wagner MH, Kheirandish S, Hassager O (2005) Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts. J Rheol 49 (6):1317– 1327CrossRefGoogle Scholar
  38. Wagner MH, Rolón-Garrido VH (2010) The interchain pressure effect in shear rheology. Rheol Acta 49 (5):459–471CrossRefGoogle Scholar
  39. Wagner MH, Wingstrandt SL, Alvarez NJ, Narimissa E (2018) The peculiar elongational viscosity of concentrated solutions of monodisperse PMMA in oligomeric MMA. Rheol Acta 57(8-9):591–601CrossRefGoogle Scholar
  40. Wingstrand SL, Alvarez NJ, Huang Q, Hassager O (2015) Linear and nonlinear universality in the rheology of polymer melts and solutions. Phys Rev Lett 115(7):078302CrossRefGoogle Scholar
  41. Yaoita T, Isaki T, Masubuchi Y, Watanabe H, Ianniruberto G, Marrucci G (2012) Primitive chain network simulation of elongational flows of entangled linear chains: stretch/orientation-induced reduction of monomeric friction. Macromolecules 45 (6):2773– 2782CrossRefGoogle Scholar
  42. Ye X, Sridhar T (2005) Effects of the polydispersity on rheological properties of entangled polystyrene solutions. Macromolecules 38(8):3442–3449CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Henrik Koblitz Rasmussen
    • 1
    Email author
  • Sara Lindeblad Wingstrand
    • 2
  • Ole Hassager
    • 2
  1. 1.Department of Mechanical EngineeringTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.Department of Chemical and Biochemical EngineeringTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations