Advertisement

Large-amplitude oscillatory shear flow simulation for a FENE fluid

  • Aldo Gómez-López
  • Víctor H. Ferrer
  • Eduardo Rincón
  • Juan P. Aguayo
  • Ángel E. Chávez
  • René O. VargasEmail author
Original Contribution
  • 27 Downloads

Abstract

In this work, the FENE dumbbell model under small- and large-amplitude oscillatory shear flows using a micro-macro approach is presented. This approach involves the evolution of an ensemble of Brownian Configuration Fields which describes the polymer dynamics of the microscopic scale and the momentum equation describes the macroscopic scale. The Lissajous curves for the shear stress and the first normal stress difference versus the instantaneous strain or strain rate for the elastic or viscous projection are shown. The influences of the solvent/polymer viscosity ratio, the maximum extension length, and the relation between strain rate and frequency are analyzed. An important finding is the self-intersection of the Lissajous curves, which forms secondary loops for short extension lengths and high Weissenberg/Deborah dimensionless numbers ratio.

Keywords

LAOS Multiscale Maximum extension length Oscillatory flow Viscoelasticity FENE model 

Notes

Funding information

The first author received financial support from the National Council for Science and Technology (CONACyT) of Mexico and the National Autonomous University of México (UNAM) through its postgraduate programs. R.O.V. received support with the project SIP-IPN 20196476.

References

  1. Adrian DW, Giacomin A (1992) The quasi-periodic nature of a polyurethane melt in oscillatory shear. J Rheol 36(7):1227–1243Google Scholar
  2. Atalik K, Keunings R (2004a) On the occurrence of even harmonics in the shear stress response of viscoelastic fluids in large amplitude oscillatory shear. J Non-Newtonian Fluid Mech 122(2):107–116Google Scholar
  3. Atalik K, Keunings R (2004b) On the occurrence of even harmonics in the shear stress response of viscoelastic fluids in large amplitude oscillatory shear. J Non-Newtonian Fluid Mech 122:107–116Google Scholar
  4. Bharadwaj NA, Ewoldt RH (2014) The general low-frequency prediction for asymptotically nonlinear material functions in oscillatory shear. J Rheol 58(4):891–910Google Scholar
  5. Bird RB, Hassager O, Armstrong RC, Curtiss CF (1977) Dynamics of polymeric liquids vol.2. Kinetic theory. Wiley, New YorkGoogle Scholar
  6. Bird RB, Giacomin AJ, Schmalzer AM, Aumnate C (2014) Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: Shear stress response. J Chem Phys 140(7):074,904–1–074,904–16Google Scholar
  7. Blawzdziewicz Vlahovska JP aand, Loewenberg M (2002) Nonlinear rheology of a dilute emulsion of surfactant-covered spherical drops in time-dependent flows. J Fluid Mech 463:1–24Google Scholar
  8. Deshpande AP (2010) Rheology of complex fluids. Springer, New YorkGoogle Scholar
  9. de Souza-Mendes PR, Thompson RL (2013) A unified approach to model elasto-viscoplastic thixotropic yield-stress materials and apparent yield-stress fluids. Rheol Acta 52(7):673–694Google Scholar
  10. Ewoldt RH, McKinley GH (2010) On secondary loops in Laos via self-intersection of lissajous–bowditch curves. Rheol Acta 49(6):213–219Google Scholar
  11. Ewoldt RH, Hosoi AE, McKinley GH (2008) New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol 52(6):1427–1458Google Scholar
  12. Ferrer V, Gómez A, Ortega J, Manero O, Rincón E, López-Serrano F, Vargas RO (2017) Modeling of complex fluids using micro-macro approach with transient network dynamics. Rheol Acta 56(5):445–459Google Scholar
  13. Giacomin AJ (1987) A sliding plate melt rheometer incorporating a shear stress transducer. McGill University, PhD ThesisGoogle Scholar
  14. Giacomin AJ, Dealy JM (1986) A new rheometer for mmolten plastics. SPE Tech Pappers 32(8):711–714Google Scholar
  15. Giacomin AJ, Samurkas T, Dealy JM (1989) A novel sliding plate rheometer for molten plastics. Polym Eng Sci 29(8):499–504Google Scholar
  16. Giacomin AJ, Bird RB, Johnson LM, Mix AW (2011) Large-amplitude oscillatory shear flow from the corotational maxwell model. J Non-Newtonian Fluid Mech 166:1081–1099Google Scholar
  17. Gurnon AK, Wagner NJ (2012) Large amplitude oscillatory shear (laos) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles. J Rheol 56(2):333–351Google Scholar
  18. Halin P, Lielens G, Keunings R, Legat V (1998) The lagrangian particle method for macroscopic and micro-macro viscoelastic flow computations. J Non-Newtonian Fluid Mech 79(2):387–403Google Scholar
  19. Hatzikiriakos SG, Dealy JM (1991) Wall slip of molten high density polyethylene. i. sliding plate rheometer studies. J Rheol 35(4):497–523Google Scholar
  20. Hulsen MA, van Heel APG, van den Brule BHAA (1997) Simulation of viscoelastic flows using brownian configuration fields. J Non-Newtonian Fluid Mech 70(1):79–101Google Scholar
  21. Hyun K, Kim SH, Kyung HA, Lee SJ (2002) Large amplitude oscillatory shear as a way to classify the complex fluids. J Non-Newtonian Fluid Mech 107(1):51–65Google Scholar
  22. Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH (2011) A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (laos). Prog Polym Sci 36(12):1697–1753Google Scholar
  23. Jeyaseelan RS, Giacomin AJ (2008) Network theory for polymer solutions in large amplitude oscillatory shear. J Non-Newtonian Fluid Mech 148(1-3):24–32Google Scholar
  24. Khair AS (2016) Large amplitude oscillatory shear of the giesekus model. J Rheol 60(2):257–266Google Scholar
  25. Kim J, Merger D, Wilhelm M, Helgeson ME (2014) Microstructure and nonlinear signa- tures of yielding in a heterogeneous colloidal gel under large amplitude oscillatory shear. J Rheol 58(5):1359–1390Google Scholar
  26. Kornfield JA (1989) Measurement and theory of the dynamics of polydisperse polymer melts. Stanford University, PhD ThesisGoogle Scholar
  27. Kornfield JA, Fuller GG, Pearson DS (1991) Third normal stress difference and component relaxation spectra for bidisperse melts under oscillatory shear. Macromolecules 24(19):5429–5441Google Scholar
  28. Laso M, Öttinger HC (1993) Calculation of viscoelastic flow using molecular models: the connffessit approach. J Non-Newtonian Fluid Mech 47:1–20Google Scholar
  29. Lozinski A, Chauviere C (2003) A fast solver for fokker-planck equation applied to viscoelastic flows calculations: 2d fene model. J Comput Phys 189(2):607–625Google Scholar
  30. Mas R, Magnin A (1997) Experimental validation of steady shear and dynamic viscosity relation for yield stress fluids. Rheol Acta 36(1):49–55Google Scholar
  31. Melchior M, Öttinger HC (1995) Variance reduced simulations of stochastic differential equations. J Chem Phys 103(21):9506Google Scholar
  32. Oakley J, Giacomin A, Yosick J (1999) Molecular origins of nonlinear viscoelasticity. Microchim Acta 130(1/2):1Google Scholar
  33. Öttinger HC (1995) Stochastic processes in polymeric fluids : tools and examples for developing simulation algorithms. Springer Verlag, Berlin, p 1995Google Scholar
  34. Öttinger HC, van den Brule BHAA, Hulsen MA (1997) Brownian configuration fields and variance reduced connffessit. J Non-Newtonian Fluid Mech 70(3):255–261Google Scholar
  35. Owens RG, Phillips TN (2002) Computational rheology. Imperial College Press, LondonGoogle Scholar
  36. Phillips TN, Smith KD (2006) A spectral element approach to the simulation of viscoelastic flows using brownian configuration fields. J Non-Newtonian Fluid Mech 138(2):98–110Google Scholar
  37. Reimers MJ (1989) Sliding plate rheometer studies of concentrated polystyrene solutions. McGill University, PhD ThesisGoogle Scholar
  38. RM J, Dealy JM (1996) Sliding plate rheometer studies of concentrated polystyrene solutions: Large amplitude oscillatory shear of a very high molecular weight polymer in diethyl phthalate. J Rheol 40(1):167–186Google Scholar
  39. Rogers SA, Lettinga MP (2012) A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (laos): Application to theoretical nonlinear models. J Rheol 56(1):1–25Google Scholar
  40. Saengow C, Giacomin AJ, Kolitawong C (2015) Exact analytical solution for large-amplitude oscillatory shear flow. Macromol Theory Simul 24(4):352–392Google Scholar
  41. Schmalzer AM, Bird RB, Giacomin AJ (2015) Normal stress differences in large-amplitude oscillatory shear flow for dilute rigid dumbbell suspensions. J Non-Newtonian Fluid Mech 222:56–71Google Scholar
  42. Simon AR, Erwin BM, Vlassopoulos D, Cloitre M (2011) A sequence of physical processes determined and quantified in laos: Application to a yield stress fluid. J Rheol 55(2):435–458Google Scholar
  43. Smith KD, Sequeira A (2011) Micro-macro simulations of a shear-thinning viscoelastic kinetic model: applications to blood flow. Appl Anal 90(1):227–252Google Scholar
  44. Stadler FJ, Leygue A, Burhin H, Bailly C (2008) The potential of large amplitude oscillatory shear to gain an insight into the long-chain branching structure of polymers. In: The 235th ACS national meeting, polymer preprints ACS, New Orleans, LA, USA, vol 49, pp 121–122Google Scholar
  45. Swan JW, Furst EM, Wagner NJ (2014) The medium amplitude oscillatory shear of semi-dilute colloidal dispersions. part i: Linear response and normal stress differences. J Rheol 58(2):307–337Google Scholar
  46. Tiu C, Guo J, Uhlherr H (2006) Yielding behaviour of viscoplastic materials. J Ind Eng Chem 12:653–662Google Scholar
  47. Townsend AK, Wilson HJ (2018) Small- and large-amplitude oscillatory rheometry with bead-spring dumbbells in stokesian dynamics to mimic viscoelasticity. J Non-Newtonian Fluid Mech 261:136–152Google Scholar
  48. van den Brule BHAA (1993) Browian dynamics simulation of finitely extensible bead-spring chains. J Non-Newtonian Fluid Mech 47(C):357–378Google Scholar
  49. van Heel APG, Hulsen MA, van den Brule BHAA (1998) On the selection of parameters in the FENE-P model. J Non-Newtonian Fluid Mech 75(2-3):253–271Google Scholar
  50. vom Scheidt J (1989) Introduction to stochastic differential equations. J Appl Math Mech 69(8):258Google Scholar
  51. Vargas RO, Manero O, Phillips TN (2009) Viscoelastic flow past confined objects using a micro-macro approach. Rheol Acta 48(4):373–395Google Scholar
  52. Warner HR (1972) Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells. Ind Eng Chem Fundam 11(3):379–387Google Scholar
  53. Wendt JF, Anderson JD (2009) Computational fluid dynamics : an introduction. Springer Verlag, New YorkGoogle Scholar
  54. Xi-Jun F, Bird RB (1984) A kinetic theory for polymer melts vi. calculation of additional material functions. J Non-Newtonian Fluid Mech 15(3):341–373Google Scholar
  55. Yosick JA, Giacomin JA, Stewart WE, Ding F (1998) Fluid inertia in large amplitude oscillatory shear. Rheol Acta 37(4):365–373Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Aldo Gómez-López
    • 1
  • Víctor H. Ferrer
    • 2
  • Eduardo Rincón
    • 3
  • Juan P. Aguayo
    • 4
  • Ángel E. Chávez
    • 5
  • René O. Vargas
    • 6
    Email author
  1. 1.Departamento de Termofluidos, Facultad de IngenieríaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.ESIME-ZacatencoInstituto Politécnico NacionalMexico CityMexico
  3. 3.DirecciónMorelos Sociedad al Servicio de la niñez s.c.Ciudad de MéxicoMéxico
  4. 4.Instituto de Ciencias Aplicadas y TecnologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  5. 5.Departamento de Ingenierá Química, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  6. 6.ESIME AzcapotzalcoInstituto Politécnico NacionalMexico CityMexico

Personalised recommendations