Advertisement

Rheologica Acta

, Volume 58, Issue 3–4, pp 203–216 | Cite as

Fumed alumina-in-nematic liquid crystal suspensions under shear and electric field

  • Saket Kumar
  • Saumyakanti Khatua
  • Prachi TharejaEmail author
Original Contribution
  • 105 Downloads

Abstract

We study rheology, microstructure, and response to an applied electric field (E) in suspensions of fumed alumina (Al2O3) nanoparticles in a nematic liquid crystal (NLC) made of N-(4-methoxybenzylidene)-4-butylaniline (MBBA). Fumed Al2O3/MBBA suspensions exhibit flowability with nanoparticle volume fraction (ϕ) = 0.001 and 0.007, and become solid-like gels at a nanoparticle ϕ = 0.014 and beyond. The dynamic rheology of gel-like suspensions follows the soft glass rheology (SGR) model. The effective noise temperature remains close to 1 for these Al2O3/MBBA suspensions, which serves as an indication of the presence of glassy dynamics. Further, the optical microscopy and the differential scanning calorimetry (DSC) reveal that the incorporation of fumed Al2O3 nanoparticles causes a significant depression in the nematic-isotropic phase transition temperature (TNI). The gel-like suspensions are less sensitive to pre-shear and show a large structural recovery after shear when compared to Al2O3/silicone oil suspensions. At and above a critical nanoparticle ϕ = 0.005, the suspensions exhibit a reversible nematic-isotropic phase transition under the application of E.

Keywords

Fumed nanoparticles Nematic liquid crystals Rheology Electric field-driven phase transition 

Notes

Acknowledgements

Prachi Thareja is grateful to the funding provided by the Science and Engineering Research Board (SERB), and Department of Science and Technology (DST), grant # EMR/2016/003840, India. The authors further acknowledge the support and funding provided by IIT Gandhinagar.

Supplementary material

397_2019_1132_MOESM1_ESM.docx (3.8 mb)
ESM 1 (DOCX 3883 kb)

References

  1. Agarwal A, Sidiq S, Setia S, Bukusoglu E, de Pablo JJ, Pal SK, Abbott NL (2013) Colloid-in-liquid crystal gels that respond to biomolecular interactions. Small 9:2785–2792.  https://doi.org/10.1002/smll.201202869 CrossRefGoogle Scholar
  2. Albers P, Maier M, Reisinger M, Hannebauer B, Weinand R (2015) Physical boundaries within aggregates–differences between amorphous, para-crystalline, and crystalline structures. Cryst Res Technol 50:846–865.  https://doi.org/10.1002/crat.201500040 CrossRefGoogle Scholar
  3. Anderson VJ, Terentjev EM (2001) Cellular solid behaviour of liquid crystal colloids 2. Mechanical properties. Eur Phys J E 4:21–28.  https://doi.org/10.1007/s101890170138 CrossRefGoogle Scholar
  4. Bandyopadhyay R, Liang D, Colby RH, Harden JL, Leheny RL (2005) Enhanced elasticity and soft glassy rheology of a smectic in a random porous environment. Phys Rev Lett 94(107801).  https://doi.org/10.1103/PhysRevLett.94.107801
  5. Bellini T, Buscaglia M, Chiccoli C, Mantegazza F, Pasini P, Zannoni C (2000) Nematics with quenched disorder: what is left when long range order is disrupted? Phys Rev Lett 85:1008–1011.  https://doi.org/10.1103/PhysRevLett.85.1008 CrossRefGoogle Scholar
  6. Bellini T, Buscaglia M, Chiccoli C, Mantegazza F, Pasini P, Zannoni C (2002) Nematics with quenched disorder: how long will it take to heal? Phys Rev Lett 88(245506).  https://doi.org/10.1103/PhysRevLett.88.245506
  7. Bellini T, Radzihovsky L, Toner J, Clark NA (2001) Universality and scaling in the disordering of a smectic liquid crystal. Science 294:1074–1079.  https://doi.org/10.1126/science.1057480 CrossRefGoogle Scholar
  8. Clegg PS, Stock C, Birgeneau RJ, Garland CW, Roshi A, Iannacchione GS (2003) Effect of a quenched random field on a continuous symmetry breaking transition: nematic to smectic-a transition in octyloxycyanobiphenyl-aerosil dispersions. Phys Rev E 67(021703).  https://doi.org/10.1103/PhysRevE.67.021703
  9. Coblas D, Broboana D, Balan C (2016) Correlation between large amplitude oscillatory shear (LAOS) and steady shear of soft solids at the onset of the fluid rheological behavior. Polymer 104:215–226.  https://doi.org/10.1016/j.polymer.2016.06.003 CrossRefGoogle Scholar
  10. Cordoyiannis G, Kralj S, Nounesis G, Kutnjak Z, Žumer S (2007) Pretransitional effects near the smectic-A–smectic-C* phase transition of hydrophilic and hydrophobic aerosil networks dispersed in ferroelectric liquid crystals. Phys Rev E 75(021702).  https://doi.org/10.1103/PhysRevE.75.021702
  11. Dennis L, Matthew AB, Robert LL (2004) Smectic liquid crystals in anisotropic colloidal silica gels. J Phys Condens Matter 16:S1989–S2002.  https://doi.org/10.1088/0953-8984/16/19/011 CrossRefGoogle Scholar
  12. Domenech T, Velankar SS (2015) On the rheology of pendular gels and morphological developments in paste-like ternary systems based on capillary attraction. Soft Matter 11(8):1500–1516.  https://doi.org/10.1039/C4SM02053G CrossRefGoogle Scholar
  13. Dorigato A, Pegoretti A, Penati A (2010) Linear low-density polyethylene/silica micro-and nanocomposites: dynamic rheological measurements and modelling. Express Polym Lett 4:115–129.  https://doi.org/10.3144/expresspolymlett.2010.16 CrossRefGoogle Scholar
  14. Hourri A, Bose TK, Thoen J (2001) Effect of silica aerosil dispersions on the dielectric properties of a nematic liquid crystal. Phys Rev E 63(051702).  https://doi.org/10.1103/PhysRevE.63.051702
  15. Hourri A, Jamée P, Bose TK, Thoen J (2002) Broadband dielectric relaxation study of 6CB and 6CB-aerosil dispersions in the nematic and isotropic phases. Liq Cryst 29:459–466.  https://doi.org/10.1080/02678290110114305 CrossRefGoogle Scholar
  16. Hwang J-Y, Chien L-C (2012) 10.4: Aerosil gels-dispersed blue-phase liquid crystals: a new technique to control the electro-optical behavior of a fast-switching display. SID Symposium Digest of Technical Papers 43:109–112.  https://doi.org/10.1002/j.2168-0159.2012.tb05723.x CrossRefGoogle Scholar
  17. Hyun K, Kim SH, Ahn KH, Lee SJ (2002) Large amplitude oscillatory shear as a way to classify the complex fluids. J Nonnewton Fluid Mech 107(1–3):51–65.  https://doi.org/10.1016/S0377-0257(02)00141-6 CrossRefGoogle Scholar
  18. Joshi T, Prakash J, Kumar A, Gangwar J, Srivastava AK, Singh S, Biradar AM (2011) Alumina nanoparticles find an application to reduce the ionic effects of ferroelectric liquid crystal. J Phys D 44:315404.  https://doi.org/10.1088/0022-3727/44/31/315404 CrossRefGoogle Scholar
  19. Kawata Y, Yamamoto T, Kihara H, Ohno K (2015) Dual self-healing abilities of composite gels consisting of polymer-brush-afforded particles and an azobenzene-doped liquid crystal. ACS Appl Mater Interfaces 7:4185–4191.  https://doi.org/10.1021/am5084573 CrossRefGoogle Scholar
  20. Kreuzer M, Tschudi T, De Jeu W, Eidenschink R (1993) New liquid crystal display with bistability and selective erasure using scattering in filled nematics. Appl Phys Lett 62:1712–1714.  https://doi.org/10.1063/1.109582 CrossRefGoogle Scholar
  21. Kulkarni S, Thareja P (2017) Suspensions of titania nanoparticle networks in nematic liquid crystals: rheology and microstructure. Rheol Acta 56:825–840.  https://doi.org/10.1007/s00397-017-1039-7 CrossRefGoogle Scholar
  22. Kumar S, Thareja P (2016) Influence of electric field and shear on the rheology of fumed alumina in silicone oil suspensions. Colloids Surf A Physicochem Eng Asp 511:339–350.  https://doi.org/10.1016/j.colsurfa.2016.10.006 CrossRefGoogle Scholar
  23. Läuger J, Wollny K, Huck S (2002) Direct strain oscillation: a new oscillatory method enabling measurements at very small shear stresses and strains. Rheol Acta 41:356–361.  https://doi.org/10.1007/s00397-002-0231-5 CrossRefGoogle Scholar
  24. Leheny RL, Park S, Birgeneau RJ, Gallani JL, Garland CW, Iannacchione GS (2003) Smectic ordering in liquid-crystal–aerosil dispersions. I. X-ray scattering. Phys Rev E 67(011708).  https://doi.org/10.1103/PhysRevE.67.011708
  25. Loudet J-C, Barois P, Poulin P (2000) Collodial ordering from phase separation in a liquid-crystalline continuous phase. Nature 407:611–613.  https://doi.org/10.1038/35036539 CrossRefGoogle Scholar
  26. Mason TG, Weitz DA (1995) Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition. Phys Rev Lett 75:2770–2773.  https://doi.org/10.1103/PhysRevLett.75.2770 CrossRefGoogle Scholar
  27. Meeker SP, Poon WCK, Crain J, Terentjev EM (2000) Colloid–liquid-crystal composites: an unusual soft solid. Phys Rev E 61:R6083–R6086.  https://doi.org/10.1103/PhysRevE.61.R6083 CrossRefGoogle Scholar
  28. Mercuri F, Paoloni S, Zammit U, Marinelli M (2005) Dynamics at the nematic-isotropic phase transition in aerosil dispersed liquid crystal. Phys Rev Lett 94(247801).  https://doi.org/10.1103/PhysRevLett.94.247801
  29. Muševič I, Škarabot M, Tkalec U, Ravnik M, Žumer S (2006) Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science 313:954–958.  https://doi.org/10.1126/science.1129660 CrossRefGoogle Scholar
  30. Nair GG, Prasad SK, Bhargavi R, Jayalakshmi V, Shanker G, Yelamaggad CV (2010) Soft glass rheology in liquid crystalline gels formed by a monodisperse dipeptide. J Phys Chem B 114:697–704.  https://doi.org/10.1021/jp9071394 CrossRefGoogle Scholar
  31. Negi AS, Osuji CO (2009) New insights on fumed colloidal rheology—shear thickening and vorticity-aligned structures in flocculating dispersions. Rheol Acta 48:871–881.  https://doi.org/10.1007/s00397-008-0341-9 CrossRefGoogle Scholar
  32. Nych AB, Ognysta UM, Pergamenshchik VM, Lev BI, Nazarenko VG, Muševič I, Škarabot M, Lavrentovich OD (2007) Coexistence of two colloidal crystals at the nematic-liquid-crystal–air interface. Phys Rev Lett 98(057801).  https://doi.org/10.1103/PhysRevLett.98.057801
  33. Pal SK, Agarwal A, Abbott NL (2009) Chemically responsive gels prepared from microspheres dispersed in liquid crystals. Small 5:2589–2596.  https://doi.org/10.1002/smll.200900961 CrossRefGoogle Scholar
  34. Pham KN, Petekidis G, Vlassopoulos D, Egelhaaf SU, Pusey PN, Poon WCK (2006) Yielding of colloidal glasses. EPL 75:624–630.  https://doi.org/10.1209/epl/i2006-10156-y CrossRefGoogle Scholar
  35. Poulin P, Stark H, Lubensky TC, Weitz DA (1997) Novel colloidal interactions in anisotropic fluids. Science 275:1770–1773.  https://doi.org/10.1126/science.275.5307.1770 CrossRefGoogle Scholar
  36. Roshi A, Iannacchione GS, Clegg PS, Birgeneau RJ (2004) Evolution of the isotropic-to-nematic phase transition in octyloxycyanobiphenyl+ aerosil dispersions. Phys Rev E 69(3):031703.  https://doi.org/10.1103/PhysRevE.69.031703 CrossRefGoogle Scholar
  37. Sepehr M, Utracki LA, Zheng X, Wilkie CA (2005) Polystyrenes with macro-intercalated organoclay. Part II. Rheology and mechanical performance. Polymer 46:11569–11581.  https://doi.org/10.1016/j.polymer.2005.10.032 CrossRefGoogle Scholar
  38. Shah HJ, Fontecchio AK, Mattia D, Gogotsi Y (2008) Field controlled nematic-to-isotropic phase transition in liquid crystal–carbon nanotube composites. J Appl Phys 103:064314.  https://doi.org/10.1063/1.2844384 CrossRefGoogle Scholar
  39. Sinha G, Oka A, Glorieux C, Thoen J (2004) Weakly polar liquid crystal dispersed with hydrophobic and hydrophilic aerosils: a broadband dielectric study. Liq Cryst 31:1123–1129.  https://doi.org/10.1080/02678290410001720894 CrossRefGoogle Scholar
  40. Škarabot M, Ravnik M, Žumer S, Tkalec U, Poberaj I, Babič D, Muševič I (2008) Hierarchical self-assembly of nematic colloidal superstructures. Phys Rev E 77(061706).  https://doi.org/10.1103/PhysRevE.77.061706
  41. Smalyukh II, Chernyshuk S, Lev BI, Nych AB, Ognysta U, Nazarenko VG, Lavrentovich OD (2004) Ordered droplet structures at the liquid crystal surface and elastic-capillary colloidal interactions. Phys Rev Lett 93(117801).  https://doi.org/10.1103/PhysRevLett.93.117801
  42. Sollich P (1998) Rheological constitutive equation for a model of soft glassy materials. Phys Rev E 58:738–759.  https://doi.org/10.1103/PhysRevE.58.738 CrossRefGoogle Scholar
  43. Sollich P, Lequeux F, Hébraud P, Cates ME (1997) Rheology of soft glassy materials. Phys Rev Lett 78:2020–2023.  https://doi.org/10.1103/PhysRevLett.78.2020 CrossRefGoogle Scholar
  44. Stark H (2001) Physics of colloidal dispersions in nematic liquid crystals. Phys Rep 351:387–474.  https://doi.org/10.1016/S0370-1573(00)00144-7 CrossRefGoogle Scholar
  45. Teng T-P, Hung Y-H, Teng T-C, Chen J-H (2011) Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow. Nanoscale Res Lett 6(488).  https://doi.org/10.1186/1556-276x-6-488
  46. Trappe V, Prasad V, Cipelletti L, Segre PN, Weitz DA (2001) Jamming phase diagram for attractive particles. Nature 411:772–775.  https://doi.org/10.1038/35081021 CrossRefGoogle Scholar
  47. Trappe V, Weitz DA (2000) Scaling of the viscoelasticity of weakly attractive particles. Phys Rev Lett 85:449–452.  https://doi.org/10.1103/PhysRevLett.85.449 CrossRefGoogle Scholar
  48. Vollmer D, Hinze G, Ullrich B, Poon WCK, Cates ME, Schofield AB (2005) Formation of self-supporting reversible cellular networks in suspensions of colloids and liquid crystals. Langmuir 21:4921–4930.  https://doi.org/10.1021/la047090w CrossRefGoogle Scholar
  49. Wood TA, Lintuvuori JS, Schofield AB, Marenduzzo D, Poon WCK (2011) A self-quenched defect glass in a colloid-nematic liquid crystal composite. Science 334:79–83.  https://doi.org/10.1126/science.1209997 CrossRefGoogle Scholar
  50. Wu D, Wu L, Wu L, Zhang M (2006) Rheology and thermal stability of polylactide/clay nanocomposites. Polym Degrad Stabil 91:3149–3155.  https://doi.org/10.1016/j.polymdegradstab.2006.07.021 CrossRefGoogle Scholar
  51. Wu X, Goldburg WI, Liu MX, Xue JZ (1992) Slow dynamics of isotropic-nematic phase transition in silica gels. Phys Rev Lett 69:470–473.  https://doi.org/10.1103/PhysRevLett.69.470 CrossRefGoogle Scholar
  52. Yadav N, Dabrowski R, Dhar R (2014) Effect of alumina nanoparticles on dielectric permittivity, electrical conductivity, director relaxation frequency, threshold and switching voltages of a nematic liquid crystalline material. Liq Cryst 41:1803–1810.  https://doi.org/10.1080/02678292.2014.950619 CrossRefGoogle Scholar
  53. Yamamoto T, Kawata Y, Yoshida M (2013) Contrasting roles of layered structures in the molecular assembly of liquid crystal matrices on the viscoelastic properties of microparticle/liquid crystal composite gels leading to rigidification and destabilization. J Colloid Interface Sci 397:131–136.  https://doi.org/10.1016/j.jcis.2013.01.039 CrossRefGoogle Scholar
  54. Yamamoto T, Yoshida M (2012) Viscoelastic and photoresponsive properties of microparticle/liquid-crystal composite gels: tunable mechanical strength along with rapid-recovery nature and photochemical surface healing using an azobenzene dopant. Langmuir 28:8463–8469.  https://doi.org/10.1021/la3001784 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Saket Kumar
    • 1
  • Saumyakanti Khatua
    • 2
  • Prachi Thareja
    • 1
    Email author
  1. 1.Department of Chemical EngineeringIndian Institute of TechnologyGandhinagarIndia
  2. 2.Department of ChemistryIndian Institute of TechnologyGandhinagarIndia

Personalised recommendations