Rheologica Acta

, Volume 57, Issue 11, pp 757–770 | Cite as

High sensitivity measurements of normal force under large amplitude oscillatory shear

  • Ingo F. C. Naue
  • Roland KádárEmail author
  • M. Wilhelm
Original Contribution


The two aims of this publication are to introduce a new and rheometer-independent rheometric tool for measuring the axial normal force in oscillatory shear rheology and to study the normal forces of polyolefin melts under large amplitude oscillatory shear (LAOS). A new plate geometry with an incorporated highly sensitive piezoelectric normal force sensor was designed for a rotational rheometer. The new geometry was used to investigate normal forces of polyethylene (PE) melts under LAOS. The resulting stress and normal force data was compared with the data from measurements in commercial high performance rotational rheometers. The stress and the normal force response were Fourier-transformed and their resulting spectra were analysed. The non-linear contributions to the FT-magnitude spectra (i.e. the intensities of the higher harmonics) were analysed using the framework of the Q-parameter, \(Q=I_{3/1}/{\gamma ^{2}_{0}}\) for both the stress spectrum and the normal force spectrum, resulting in the strain-dependent \(Q\left (\gamma _{0}\right )\) and \(Q_{NF}\left (\gamma _{0}\right )\), respectively. The newly designed normal force geometry had a sensitivity in the measurement starting from \(5\times 10^{-5}\) N up to 20 N, and respectively a signal-to-noise ratio (SNR) of \(1:\) 16.000, which is about a factor of 1.8 times better than the best performing commercial rheometers. The new geometry was used to determine \(Q\left (\gamma _{0}\right )\) and \(Q_{NF}\left (\gamma _{0}\right )\), to characterize the shear rheological behaviour of the PE melts. Even rather simple rheometers, those without normal force detection, can be extended utilizing the here presented tools for high sensitive FT-rheology analysing the normal forces.


Normal force Rotational rheometer Polyethylene Polymer melts Large amplitude oscillatory shear (LAOS) Rheometer 



The authors want to thank Dr. C.O. Klein for his preliminary work with the CaBER, see Klein et al. (2009) and D. Zimmermann for his support at the ARES measurements. Furthermore, the authors want to thank, Dr. I. Vittorias from LyondellBASELL, Dr. S.A. Filipe from Borealis and Prof. H. Münstedt for providing some of the samples. The authors are grateful to Dr. D. Merger, Dr. M. Abbasi and, especially, Dr. J. Kübel for proofreading the manuscript.


  1. Baek S-G, Magda JJ (2003) Monolithic rheometer plate fabricated using silicon micromachining technology and containing miniature pressure sensors for N1 and N2 measurements. J Rheol 47(5):1249–1260CrossRefGoogle Scholar
  2. Bracewell RN (1965) The Fourier transform and its applications. McGraw-Hill, New YorkGoogle Scholar
  3. Carotenuto C, Grosso M, Maffettone PL (2008) Fourier transform rheology of dilute immiscible polymer blends A novel procedure to probe blend morphology. Macromolecules 41(12):4492–4500CrossRefGoogle Scholar
  4. Cziep MA, Abbasi M, Heck M, Arens L, Wilhelm M (2016) Effect of molecular weight, polydispersity, and monomer of linear homopolymer melts on the intrinsic mechanical nonlinearity \({~}^{3}\!\text {q}0(\omega )\) in MAOS. Macromolecules 49(9):3566–3579CrossRefGoogle Scholar
  5. Debbaut B, Burhin H (2002) Large amplitude oscillatory shear and fourier-transform rheology for a high-density polyethylene: experiments and numerical simulation. J Rheol 46(5):1155–1176CrossRefGoogle Scholar
  6. Dodge JS, Krieger IM (1971) Oscillatory shear of nonlinear fluids I. preliminary investigation. Trans Soc Rheol 15(4):589–601CrossRefGoogle Scholar
  7. Doeblin EO, Manik DN (2011) Measurement systems. Tata McGraw-Hill, New DelhiGoogle Scholar
  8. Gahleitner M (2001) Melt rheology of polyolefins. Prog Polym Sci 26(6):895–944CrossRefGoogle Scholar
  9. Giacomin AJ, Oakley JG (1992) Structural network models for molten plastics evaluated in large-amplitude oscillatory shear. J Rheol 36(8):1529–1546CrossRefGoogle Scholar
  10. Giacomin AJ, Jeyaseelan RS, Samurkas T, Dealy JM (1993) Validity of separable BKZ model for large-amplitude oscillatory shear. J Rheol 37(5):811–826CrossRefGoogle Scholar
  11. Gleissle W (1974) Schub- und Normalspannungsmessungen an silikonölen bei hohen Schergefällen mit einem neuen Kegel-Platte-Rheometer. Colloid Polym Sci 252(10):848–853CrossRefGoogle Scholar
  12. Gleissle W, Ohl N (1990) On the relaxation of shear and normal stresses of viscoelastic fluids following constant shear rate experiments. Rheol Acta 29(4):261–280CrossRefGoogle Scholar
  13. Gleissle W, Reichert H (1973) Kurzzeit-Rotations-Rheometer zur Messung von hohen Schub- und Normalspannungen bei grossen Schergefällen. Rheol Acta 12(4):572–577CrossRefGoogle Scholar
  14. Graham MD (1995) Wall slip the nonlinear dynamics of large amplitude oscillatory shear flows. J Rheol 39 (4):697–712CrossRefGoogle Scholar
  15. Hatzikiriakos SG, Dealy JM (1991) Wall slip of molten high density polyethylene. I. Sliding plate rheometer studies. J Rheol 35(4):497–523CrossRefGoogle Scholar
  16. Heymann L, Peukert S, Aksel N (2002) Investigation of the solid–liquid transition of highly concentrated suspensions in oscillatory amplitude sweeps. J Rheol 46(1):93–112CrossRefGoogle Scholar
  17. Hyun K, Kim W (2011) A new non-linear parameter Q from FT-rheology under nonlinear dynamic oscillatory shear for polymer melts system Korea-Australia. Rheol J 23(4):227–235Google Scholar
  18. Hyun K, Wilhelm M (2008) Establishing a new mechanical nonlinear coefficient Q from FT-rheology: first investigation of entangled linear and comb polymer model systems. Macromolecules 42(1):411–422CrossRefGoogle Scholar
  19. Hyun K, Wilhelm M (2010) Non-linear rheology of entangled linear and branched polymer melts under large amplitude oscillatory shear. Kautsch Gummi Kunstst 4:123–129Google Scholar
  20. Hyun K, Wilhelm M, Klein C, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH (2011) A review of nonlinear oscillatory shear tests Analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36(12):1697– 1753CrossRefGoogle Scholar
  21. Jeyaseelan RS, Giacomin AJ (1993) Best fit for differential constitutive model parameters to nonlinear oscillation data. J Non-Newtonian Fluid Mech 47:267–280CrossRefGoogle Scholar
  22. Kempf M (2011) Synthesis and rheology of model comb polymer architectures. PhD thesis, Karlsruhe Institute of Technology (KIT)Google Scholar
  23. Kempf M, Barroso VC, Wilhelm M (2010) Anionic synthesis and rheological characterization of poly(p-methylstyrene) model comb architectures with a defined and very low degree of long chain branching. Macromol Rapid Commun 31(24):2140–2145CrossRefGoogle Scholar
  24. Klein C (2005) Rheology and fourier-transform rheology on water-based systems. PhD thesis, Johannes Gutenberg University MainzGoogle Scholar
  25. Klein C, Naue IFC, Nijman J, Wilhelm M (2009) Addition of the force measurement capability to a commercially available extensional rheometer (caBER). Soft Mater 7(4):242–257CrossRefGoogle Scholar
  26. Klimke K, Parkinson M, Piel C, Kaminsky W, Spiess H-W, Wilhelm M (2006) Optimisation and application of polyolefin branch quantification by melt-state \(_{13}\)C NMR spectroscopy. Macromol Chem Phys 207(4):382–395CrossRefGoogle Scholar
  27. Komatsu H, Mitsui T, Onogi S (1973) Nonlinear viscoelastic properties of semisolid emulsions. Trans Soc Rheol 17(2):351–364CrossRefGoogle Scholar
  28. Kröger M (2004) Simple models for complex nonequilibrium fluids. Phys Rep 390(6):453–551CrossRefGoogle Scholar
  29. Laun HM (1978) Description of the non-linear shear behaviour of a low density polyethylene melt by means of an experimentally determined strain dependent memory function. Rheol Acta 17(1):1–15CrossRefGoogle Scholar
  30. Liu J, Lou L, Yu W, Liao R, Li R, Zhou C (2010) Long chain branching polylactide: structures and properties. Polymers 51(22):5186–5197CrossRefGoogle Scholar
  31. Lodge AS (1989) An attempt to measure the first normal-stress difference N1 in shear flow for a polyisobutylene/decalin solution D2b at shear rates up to 106 \(s^{-1}\). J Rheol 33(6):821–841CrossRefGoogle Scholar
  32. Lohse DJ, Milner ST, Fetters LJ, Xenidou M, Hadjichristidis N, Mendelson RA, Garcia-Franco CA, Lyon MK (2002) Well-defined, model long chain branched polyethylene. 2. melt rheological behavior. Macromolecules 35(8):3066–3075CrossRefGoogle Scholar
  33. Matsumoto T, Segawa Y, Warashina Y, Onogi S (1973) Nonlinear behavior of viscoelastic materials. III. The method of analysis and temperature dependence of nonlinear viscoelastic functions. Trans Soc Rheol 17(1):47–62CrossRefGoogle Scholar
  34. Merger D, Wilhelm M (2014) Intrinsic nonlinearity from LAOStrain experiments on various strain- and stress-controlled rheometers: a quantitative comparison. Rheol Acta 53(8):621–634CrossRefGoogle Scholar
  35. Münstedt H, Laun HM (1979) Elongational behaviour of a low density polyethylene melt. Rheol Acta 18 (4):492–504CrossRefGoogle Scholar
  36. Münstedt H, Laun HM (1981) Elongational properties and molecular structure of polyethylene melts. Rheol Acta 20(3):211–221CrossRefGoogle Scholar
  37. Nam JG, Hyun K, Ahn KH, Lee SJ (2008) Prediction of normal stresses under large amplitude oscillatory shear flow. J Non-Newtonian Fluid Mech 150(1):1–10CrossRefGoogle Scholar
  38. Nam JG, Ahn KH, Lee SJ, Hyun K (2010) First normal stress difference of entangled polymer solutions in large amplitude oscillatory shear flow. J Rheol 54(6):1243–1266CrossRefGoogle Scholar
  39. Neidhöfer T, Wilhelm M, Debbaut B (2003) Fourier-transform rheology experiments and finite-element simulations on linear polystyrene solutions. J Rheol 47(6):1351–1371CrossRefGoogle Scholar
  40. Oakley JG, Giacomin AJ (1994) A sliding plate normal thrust rheometer for molten plastics. Polym Eng Sci 34(7):580–584CrossRefGoogle Scholar
  41. Onogi S, Masuda T, Matsumoto T (1970) Non-linear behavior of viscoelastic materials. I. disperse systems of polystyrene solution and carbon black. Trans Soc Rheol 14(2):275–294CrossRefGoogle Scholar
  42. Philippoff W (1966) Vibrational measurements with large amplitudes. J Rheol 10(1):317–334Google Scholar
  43. Sagis LMC, Ramaekers M, van der Linden E (2001) Constitutive equations for an elastic material with anisotropic rigid particles. Phys Rev E 63(5):051504Google Scholar
  44. Schweizer T (2002) Measurement of the first and second normal stress differences in a polystyrene melt with a cone and partitioned plate tool. Rheol Acta 41(4):337–344CrossRefGoogle Scholar
  45. Schweizer T (2003) Comparing cone-partitioned plate and cone-standard plate shear rheometry of a polystyrene melt. J Rheol 47(4):1071–1085CrossRefGoogle Scholar
  46. Schweizer T, Bardow A (2006) The role of instrument compliance in normal force measurements of polymer melts. Rheol Acta 45(4):393–402CrossRefGoogle Scholar
  47. Shaw MT (2012) Introduction to polymer rheology. Wiley, HobokenGoogle Scholar
  48. Sim HG, Ahn KH, Lee SJ (2003) Three-dimensional dynamics simulation of electrorheological fluids under large amplitude oscillatory shear flow. J Rheol 47(4):879–895CrossRefGoogle Scholar
  49. Strobl G (2007) The physics of polymers: concepts for understanding their structure and behaviour. Springer, BerlinGoogle Scholar
  50. Tee T-T, Dealy JM (1975) Nonlinear viscoelasticity of polymer melts. Trans Soc Rheol 19(4):595–615CrossRefGoogle Scholar
  51. van Dusschoten D, Wilhelm M (2001) Increased torque transducer sensitivity via oversampling. Rheol Acta 40(4):395–399Google Scholar
  52. Vega J, Aguilar M, Peon J, Pastor D, Marnez-Salazar J (2002) Effect of long chain branching on linear-viscoelastic melt properties of polyolefins. e-Polymer 2:624CrossRefGoogle Scholar
  53. Vittorias IA (2006) Fourier-transform rheology applied on homopolymer melts of different architectures- experiments and finite element simulation. PhD thesis, TUD - Technical University DarmstadtGoogle Scholar
  54. Wagner MH, Bastian H, Bernnat A, Kurzbeck S, Chai CK (2002) Determination of elongational viscosity of polymer melts by rme and rheotens experiments. Rheol Acta 41(4):316–325CrossRefGoogle Scholar
  55. Wilhelm M (2002) Fourier-transform rheology. Macromol Mater Eng 287(2):83–105CrossRefGoogle Scholar
  56. Wilhelm M, Maring D, Spiess H-W (1998) Fourier-transform rheology. Rheol Acta 37(4):399–405CrossRefGoogle Scholar
  57. Wilhelm M, Reinheimer P, Ortseifer M (1999) High sensitivity fourier-transform rheology. Rheol Acta 38:349–356CrossRefGoogle Scholar
  58. Wilhelm M, Reinheimer K, Kübel J (2012) Optimizing the sensitivity of FT-rheology to quantify and differentiate for the first time the nonlinear mechanical response of dispersed beer foams of light and dark beer. Z Phys Chem 226:547CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Karlsruhe Institute of Technology - KITKarlsruheGermany
  2. 2.Department of Industrial and Materials ScienceChalmers University of TechnologyGothenburgSweden

Personalised recommendations