Rheologica Acta

, Volume 57, Issue 8–9, pp 591–601 | Cite as

The peculiar elongational viscosity of concentrated solutions of monodisperse PMMA in oligomeric MMA

  • Manfred H. WagnerEmail author
  • Sara L. Wingstrandt
  • Nicolas J. Alvarez
  • Esmaeil Narimissa
Original Contribution


Concentrated solutions of nearly monodisperse poly(methyl methacrylate), PMMA-270k and PMMA-86k, in oligo(methyl methacrylate), MMA o-4k and MMA o-2k, investigated by Wingstrand et al. (Phys Rev Lett 115:078302, 2015) and Wingstrand (2015) do not follow the linear-viscoelastic scaling relations of monodisperse polystyrenes (PS) dissolved in oligomeric styrene (Wagner in Rheol Acta 53:765–777, 2014a, in Non-Newtonian Fluid Mech 222:121–131, 2014b; Wagner et al. in J Rheol 59:1113–1130, 2015). Rather, PMMA-270k shows an attractive interaction with MMA, in contrast to the interaction of PMMA-86k and MMA. This different behavior can be traced back to different tacticities of the two polymers. The attractive interaction of PMMA-270k with o-4k creates pseudo entanglements, which increase the interchain tube pressure, and therefore, the solution PMMA-270k/o-4k shows, as reported by Wingstrand et al. (Phys Rev Lett 115:078302, 2015), qualitatively a similar scaling of the elongational viscosity with \( {\left(\dot{\varepsilon}{\tau}_R\right)}^{-1/2} \) as observed for polystyrene melts. For the solution PMMA-270/o-2k, this effect is only seen at the highest elongation rates investigated. The elongational viscosity of PMMA-86k dissolved in oligomeric MMA is determined by the Rouse time of the melt, as in the case of polystyrene solutions.

Graphical abstract


Constitutive equation Polymer solution Elongational flow Modelling 



  1. Bach A, Almdal K, Rasmussen HK, Hassager O (2003) Elongational viscosity of narrow molar mass distribution polystyrene. Macromolecules 36:5174–5179CrossRefGoogle Scholar
  2. Baumgaertel M, Schausberger A, Winter HH (1990) The relaxation of polymers with linear flexible chains of uniform length. Rheol Acta 29:400–408CrossRefGoogle Scholar
  3. Bhattacharjee PK, Oberhauser JP, McKinley GH, Leal LG, Sridhar T (2002) Extensional rheometry of entangled solutions. Macromolecules 35:10131–10148CrossRefGoogle Scholar
  4. Bhattacharjee PK, Nguyen DA, McKinley GH, Sridhar T (2003) Extensional stress growth and stress relaxation in entangled polymer solutions. J Rheol 47:269–290CrossRefGoogle Scholar
  5. Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, OxfordGoogle Scholar
  6. Fang J, Kröger M, Öttinger HC (2000) A thermodynamically admissible reptation model for fast flows of entangled polymers. II. Model predictions for shear and extensional flows. J Rheol 44:1293–1317CrossRefGoogle Scholar
  7. Fetters LJ, Lohse DJ, Graessley WW (1999) Chain dimensions and entanglement spacings in dense macromolecular systems. J Polym Sci B Polym Phys 37:1023–1033CrossRefGoogle Scholar
  8. Fuchs K, Friedrich C, Weese J (1996) Viscoelastic properties of narrow-distribution poly(methyl methacrylates). Macromolecules 29:5893–5901CrossRefGoogle Scholar
  9. Hassager O (2004) Polymer fluid mechanics: molecular orientation and stretching. Proc. XIVth Int. Congress on Rheology, NF01Google Scholar
  10. Huang Q, Mednova O, Rasmussen HK, Alvarez NJ, Skov AL, Almdal K, Hassager O (2013a) Concentrated polymer solutions are different from melts: role of entanglement molecular weight. Macromolecules 46:5026–5035CrossRefGoogle Scholar
  11. Huang Q, Alvarez NJ, Matsumiya Y, Rasmussen HK, Watanabe H, Hassager O (2013b) Extensional rheology of entangled polystyrene solutions suggests importance of nematic interactions. ACS Macro Lett 2:741–744CrossRefGoogle Scholar
  12. Ianniruberto G, Brasiello A, Marrucci G (2012) Simulations of fast shear flows of PS oligomero confirm monomeric fiction reduction in fast elongational flows of monodisperse PSmelts indicated ny rheooptical data. Macromolecules 45:8058–8066CrossRefGoogle Scholar
  13. Isaki T, Takahashi M, Urakawa O (2003) Biaxial damping function of entangled monodisperse polystyrene melts: comparison with the Mead-Larson-Doi model. J Rheol 47:1201–1210CrossRefGoogle Scholar
  14. Marrucci G, de Cindio B (1980) The stress relaxation of molten PMMA at large deformations and its theoretical interpretation. Rheol Acta 19:68–75.
  15. Marrucci G, Ianniruberto G (2004) Interchain pressure effect in extensional flows of entangled polymer melts. Macromolecules 37:3934–3942CrossRefGoogle Scholar
  16. Marrucci G, Ianniruberto G (2005) Modelling nonlinear polymer rheology is still challenging. Korea-Aust Rheol J 17(3):111–116Google Scholar
  17. McKinley G, Sridhar T (2002) Filament-stretching rheometry of complex fluids. Annu Rev Fluid Mech 34:375–415CrossRefGoogle Scholar
  18. McLeish TCB, Larson RG (1998) Molecular constitutive equations for a class of branched polymers: the pom-pom polymer. J Rheology 42:81–110.
  19. Mead DW, Yavich D, Leal LG (1995) The reptation model with segmental stretch II. Steady state properties. Rheol Acta 34:360–383CrossRefGoogle Scholar
  20. Mead DW, Larson RG, Doi M (1998) A molecular theory for fast flows of entangled polymers. Macromolecules 31:7895–7914CrossRefGoogle Scholar
  21. Menezes E, Graessley W (1982) Nonlinear rheological behavior of polymer systems for several shear-flow histories. J Polym Sci Polym Phys Ed 20:1817–1833Google Scholar
  22. Narimissa E, Wagner MH (2016a) A hierarchical multi-mode molecular stress function model for linear polymer melts in extensional flows. J Rheol 60:625–636CrossRefGoogle Scholar
  23. Narimissa E, Wagner MH (2016b) From linear viscoelasticity to elongational flow of polydisperse polymer melts: the hierarchical multi-mode molecular stress function model. Polymer 104:204–214CrossRefGoogle Scholar
  24. Narimissa E, Wagner MH (2016c) A hierarchical multi-mode MSF model for long-chain branched polymer melts part III: shear flow. Rheol Acta 55:633–639CrossRefGoogle Scholar
  25. Narimissa E, Rolón-Garrido VH, Wagner MH (2015) A hierarchical multi-mode MSF model for long-chain branched polymer melts part I: elongational flow. Rheol Acta 54:779–791CrossRefGoogle Scholar
  26. Narimissa E, Rolón-Garrido VH, Wagner MH (2016) A hierarchical multi-mode MSF model for long-chain branched polymer melts part II: multiaxial extensional flows. Rheol Acta 55:327–333CrossRefGoogle Scholar
  27. Nielsen JK, Rasmussen HK (2008) Reversed extension flow. J Non-Newtonian Fluid Mech 155:15–19CrossRefGoogle Scholar
  28. Nielsen JK, Rasmussen HK, Hassager O (2008) Stress relaxation of narrow molar mass distribution polystyrene following uniaxial extension. J Rheol 52:885–899CrossRefGoogle Scholar
  29. Osaki K, Nishizawa K, Kurata M (1982) Material time constant characterizing the nonlinear viscoelasticity of entangled polymeric systems. Macromolecules 15:1068–1071CrossRefGoogle Scholar
  30. Pearson DS, Kiss A, Fetters L, Doi M (1989) Flow-induced birefringence of concentrated polyisoprene solutions. J Rheol 33:517–535CrossRefGoogle Scholar
  31. Rolón-Garrido VH, Wagner MH, Luap C, Schweizer T (2006) Modeling non-Gaussian extensibility effects in elongation of nearly monodisperse polystyrene melts. J Rheol 50:327–340CrossRefGoogle Scholar
  32. Shahid T, Huang Q, Oosterlinck F, Clasena C, van Ruymbeke E (2017) Dynamic dilution exponent in monodisperse entangled polymer solutions. Soft Matter 13:269–282CrossRefGoogle Scholar
  33. Takahashi M, Isaki T, Takigawa T, Masuda T (1993) Measurement of biaxial and uniaxial extensional flow behavior of polymer melts at constant strain rates. J Rheol 37:827–846CrossRefGoogle Scholar
  34. Wagner MH (2011) The effect of dynamic tube dilation on chain stretch in nonlinear polymer melt rheology. J Non-Newtonian Fluid Mech 166:915–194CrossRefGoogle Scholar
  35. Wagner MH (2014a) Scaling relations for elongational flow of polystyrene melts and concentrated solutions of polystyrene in oligomeric styrene. Rheol Acta 53:765–777CrossRefGoogle Scholar
  36. Wagner MH (2014b) An extended interchain tube pressure model for elongational flow of polystyrene melts and concentrated solutions. J Non-Newtonian Fluid Mech 222:121–131CrossRefGoogle Scholar
  37. Wagner MH, Rolón-Garrido VH (2009a) Recent advances in constitutive modeling of polymer melts. Novel trends in rheology III (AIP Conference Proceedings 1152, ed. M. Zatloukal, American Institute of Physics), p 16–31Google Scholar
  38. Wagner MH, Rolón-Garrido VH (2009b) Nonlinear rheology of linear polymer melts: modeling chain stretch by interchain tube pressure and rouse time. Korea-Aust Rheol J 21:203–211Google Scholar
  39. Wagner MH, Schaeffer J (1992) Nonlinear strain measures for general biaxial extension of polymer melts. J Rheol 36:1–26CrossRefGoogle Scholar
  40. Wagner MH, Schaeffer J (1993) Rubbers and polymer melts: universal aspects of non-linear stress-strain relations. J Rheol 37:643–661CrossRefGoogle Scholar
  41. Wagner MH, Schaeffer J (1994) Assessment of non-linear strain measures for extensional and shearing flows of polymer melts. Rheol Acta 33:506–516CrossRefGoogle Scholar
  42. Wagner MH, Rubio P, Bastian H (2001) The molecular stress function model for polydisperse and polymer melts with dissipative convective constraint release. J Rheol 45:1387–1412CrossRefGoogle Scholar
  43. Wagner MH, Kheirandish S, Hassager O (2005) Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts. J Rheol 49:1317–1327CrossRefGoogle Scholar
  44. Wagner MH, Rolón-Garrido VH, Nielsen JK, Rasmussen HK, Hassager O (2008) A constitutive analysis of transient and steady-state elongational viscosities of bidisperse polystyrene blends. J Rheol 52:67–86CrossRefGoogle Scholar
  45. Wagner MH, Narimissa E, Rolón-Garrido VH (2015) From melt to solution: scaling relations for concentrated polystyrene solutions. J Rheol 59:1113–1130CrossRefGoogle Scholar
  46. Wingstrand SL (2015) Private communicationGoogle Scholar
  47. Wingstrand SL, Alvarez NJ, Huang Q, Hassager O (2015) Linear and nonlinear universality in the rheology of polymer melts and solutions. Phys Res Lett 115:078302CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Manfred H. Wagner
    • 1
    Email author
  • Sara L. Wingstrandt
    • 2
  • Nicolas J. Alvarez
    • 3
  • Esmaeil Narimissa
    • 4
    • 5
  1. 1.Polymer Engineering/Polymer PhysicsBerlin Institute of Technology (TU Berlin)BerlinGermany
  2. 2.Department of Chemical and Biochemical EngineeringTechnical University of DenmarkKongens LyngbyDenmark
  3. 3.Department of Chemical and Biological EngineeringDrexel UniversityPhiladelphiaUSA
  4. 4.Department of Chemical EngineeringGuangdong Technion–Israel Institute of Technology (GTIIT)ShantouChina
  5. 5.Department of Chemical EngineeringTechnion–Israel Institute of Technology (IIT), Technion CityHaifaIsrael

Personalised recommendations