Advertisement

Rheologica Acta

, Volume 58, Issue 3–4, pp 131–144 | Cite as

Simulation of bubble growth during the foaming process and mechanics of the solid foam

  • Christos Mitrias
  • Thijs  R.  N. Egelmeers
  • Nick  O. Jaensson
  • Martien  A. HulsenEmail author
  • Patrick  D. Anderson
Original Contribution
  • 165 Downloads

Abstract

Elastomeric foams are widely used in different types of applications where different material properties are of interest in each application. All of these properties are governed by the microstructure and the properties of the material matrix. Studying the evolution of the microstructure experimentally is extremely challenging. Thus, here we use direct numerical simulations to gain an insight into the changes that happen from the creation of the gas bubbles in the liquid state, until the solidification into a cellular morphology. Furthermore, the resulting microstructure is then used directly in simulations of solid mechanical testing to determine the mechanical properties of the foam. The matrix fluid is assumed to be Newtonian and incompressible. A linear elastic isotropic material model for the solidified polymer was used to obtain the solid foam properties. The foam was described by a representative volume element (RVE), where a small number of bubbles was randomly distributed. Using this approach, the RVE can describe the bulk behavior of the foam, while remaining computationally tractable. Microstructures with volumes fraction of over 90% (2D) and 45% (3D) are accurately captured. In addition, the influence that the bubble growth rate and the initial bubble distribution of the fluid simulations have on the solid foam properties was studied.

Keywords

Foam Mechanical properties Solid Simulation Fluid Surface forces 

Notes

Funding information

The research leading to these results has received funding from the European Commission under the grant agreement number 604271 (Project acronym: MoDeNa; call identifier: FP7-NMP-2013-SMALL-7).

References

  1. Amon M, Denson CD (1986) A study of the dynamics of foam growth - simplified analysis and experimental results for bulk density in structural foam molding. Polym Eng Sci 26(3):255–267.  https://doi.org/10.1002/pen.760260311 CrossRefGoogle Scholar
  2. Amon M, Denson DC (1984) A study of the dynamics of foam growth - analysis of the growth of closely spaced spherical bubbles. Polym Eng Sci 24(13):1026–1034.  https://doi.org/10.1002/pen.760241306 CrossRefGoogle Scholar
  3. Arefmanesh A, Advani SG (1991) Diffusion-induced growth of a gas bubble in a viscoelastic fluid. Rheol Acta 30(3):274–283.  https://doi.org/10.1007/BF00366641 CrossRefGoogle Scholar
  4. Ashby M (2006) The properties of foams and lattices. Philos Trans R Soc A Math Phys Eng Sci 364(1838):15–30.  https://doi.org/10.1098/rsta.2005.1678.CrossRefGoogle Scholar
  5. Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354.  https://doi.org/10.1016/0021-9991(92)90240-Y, fld.1CrossRefGoogle Scholar
  6. Chen C, Lu TJ, Fleck NA (1999) Effect of imperfections on the yielding of two-dimensional foams. J Mech Phys Solids 47(11):2235–2272.  https://doi.org/10.1016/S0022-5096(99)00030-7 CrossRefGoogle Scholar
  7. Everitt SL, Harlen OG, Wilson HJ (2006a) Bubble growth in a two-dimensional viscoelastic foam. J Non-Newtonian Fluid Mech 137(1–3):46–59.  https://doi.org/10.1016/j.jnnfm.2006.03.004 CrossRefGoogle Scholar
  8. Everitt SL, Harlen OG, Wilson HJ (2006b) Competition and interaction of polydisperse bubbles in polymer foams. J Non-Newtonian Fluid Mech 137(1–3):60–71.  https://doi.org/10.1016/j.jnnfm.2006.03.005 CrossRefGoogle Scholar
  9. Feng JJ, Bertelo CA (2004) Prediction of bubble growth and size distribution in polymer foaming based on a new heterogeneous nucleation model. Journal of Rheology 48(2):439–462.  https://doi.org/10.1122/1.1645518.CrossRefGoogle Scholar
  10. Ferkl P, Karimi M, Marchisio DL, Kosek J (2016) Multi-scale modelling of expanding polyurethane foams: coupling macro- and bubble-scales. Chem Eng Sci 148:55–64.  https://doi.org/10.1016/j.ces.2016.03.040 CrossRefGoogle Scholar
  11. Gaitanaros S, Kyriakides S, Kraynik AM (2012) On the crushing response of random open-cell foams. Int J Solids Struct 49(19–20):2733–2743.  https://doi.org/10.1016/j.ijsolstr.2012.03.003 CrossRefGoogle Scholar
  12. Geuzaine C, Remacle JF (2009) Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering (79)1309–1331.  https://doi.org/10.1002/nme.2579
  13. Gibson LJ, Ashby MF (1997) Cellular solids, Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9781139878326. http://ebooks.cambridge.org/ref/id/CBO9781139878326. arXiv:1011.1669v3
  14. Gibson LJ, Ashby MF, Karam GN, Wegst U, Shercliff HR (1995) The mechanical properties of natural materials. II: Microstructures for mechanical efficiency. Proc R Soc Lond A 450(1938):141–162.  https://doi.org/10.1098/rspa.1995.0076 CrossRefGoogle Scholar
  15. HSL (2013) A collection of Fortran codes for large scale scientific computationGoogle Scholar
  16. Hu HH, Patankar NA, Zhu MY (2001) Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique. J Comput Phys 169(2):427–462.  https://doi.org/10.1006/jcph.2000.6592 CrossRefGoogle Scholar
  17. Jaensson NO, Hulsen MA, Anderson PD (2015) Stokes-Cahn-Hilliard formulations and simulations of two-phase flows with suspended rigid particles. Comput Fluids 111:1–17.  https://doi.org/10.1016/j.compfluid.2014.12.023 CrossRefGoogle Scholar
  18. Jaensson NO, Mitrias C, Hulsen MA, Anderson PD (2018) Shear-induced migration of rigid particles near an interface between a newtonian and a viscoelastic fluid. Langmuir 34 (4):1795–1806.  https://doi.org/10.1021/acs.langmuir.7b03482 CrossRefGoogle Scholar
  19. Jang WY, Kyriakides S (2009) On the crushing of aluminum open-cell foams: Part II analysis. Int J Solids Struct 46(3–4):635–650.  https://doi.org/10.1016/j.ijsolstr.2008.10.016 CrossRefGoogle Scholar
  20. Jang WY, Kraynik AM, Kyriakides S (2008) On the microstructure of open-cell foams and its effect on elastic properties. Int J Solids Struct 45(7–8):1845–1875.  https://doi.org/10.1016/j.ijsolstr.2007.10.008 CrossRefGoogle Scholar
  21. Jang WY, Kyriakides S, Kraynik AM (2010) On the compressive strength of open-cell metal foams with Kelvin and random cell structures. Int J Solids Struct 47(21):2872–2883.  https://doi.org/10.1016/j.ijsolstr.2010.06.014 CrossRefGoogle Scholar
  22. Karimi M, Marchisio DL (2015) A baseline model for the simulation of polyurethane foams via the population balance equation. Macromol Theory Simul 24(4):291–300.  https://doi.org/10.1002/mats.201500014 CrossRefGoogle Scholar
  23. Krop S, Meijer HE, Van Breemen LC (2016) Global and local large-deformation response of sub-micron, soft- and hard-particle filled polycarbonate. J Mech Phys Solids 87:51–64.  https://doi.org/10.1016/j.jmps.2015.11.005 CrossRefGoogle Scholar
  24. Mitrias C, Jaensson NO, Hulsen MA, Anderson PD (2017) Direct numerical simulation of a bubble suspension in small amplitude oscillatory shear flow. Rheol Acta 56(6):555–565.  https://doi.org/10.1007/s00397-017-1009-0 CrossRefGoogle Scholar
  25. Ramesh NS, Rasmussen DH, Campbell GA (1991) Numerical and experimental studies of bubble growth during the microcellular foaming process. Polym Eng Sci 31(23):1657–1664.  https://doi.org/10.1002/pen.760312305 CrossRefGoogle Scholar
  26. Saad Y (2001) SPARSKIT: A basic tool kit for sparse matrix computations. Tech. rep., NASA Ames Research CenterGoogle Scholar
  27. Villone MM, Hulsen MA, Anderson PD, Maffettone PL (2014) Simulations of deformable systems in fluids under shear flow using an arbitrary Lagrangian Eulerian technique. Comput Fluids 90:88–100.  https://doi.org/10.1016/j.compfluid.2013.11.016 CrossRefGoogle Scholar
  28. Yserentant H (1991) Two multi-level methods for nonuniformly refined grids. In: Spedicato E (ed) Computer algorithms for solving linear algebraic equations. https://doi.org/10.1007/978-3-642-76717-3. Springer, Berlin, pp 161–167
  29. Yue P, Feng JJ, Bertelo CA, Hu HH (2007) An arbitrary Lagrangian-Eulerian method for simulating bubble growth in polymer foaming. J Comput Phys 226(2):2229–2249.  https://doi.org/10.1016/j.jcp.2007.07.007 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Christos Mitrias
    • 1
  • Thijs  R.  N. Egelmeers
    • 1
  • Nick  O. Jaensson
    • 1
  • Martien  A. Hulsen
    • 1
    Email author
  • Patrick  D. Anderson
    • 1
  1. 1.Department of Mechanical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations