Advertisement

Rheologica Acta

, Volume 58, Issue 1–2, pp 29–45 | Cite as

Interfacial Fourier transform shear rheometry of complex fluid interfaces

  • Christopher O. KleinEmail author
  • Antigoni Theodoratou
  • Patrick A. Rühs
  • Ulrich Jonas
  • Benoit Loppinet
  • Manfred Wilhelm
  • Peter Fischer
  • Jan Vermant
  • Dimitris Vlassopoulos
Original Contribution
  • 209 Downloads

Abstract

Nonlinear rheometry of interfaces is very challenging because of the limits of current day instrumentation and the intricate coupling of flows at interfaces and in the bulk. The use of time periodic flows may constitute a first step in addressing this issue. Fourier transform rheology (FTR) measurements with quasi-monolayers at the air-water interface are used in order to assess the suitability of the different devices to investigate nonlinear interfacial shear viscoelasticity. The probe material was a poly (methyl methacrylate) forming a soft glassy interface, whereas complementary measurements were performed with a polystyrene latex suspension forming a predominantly viscous interface at intermediate surface coverages. The obtained data with the magnetic rod rheometer (ISR) were compared against those obtained with the bicone and the double wall ring geometries attached to standard rotational rheometers. In particular, an unexpected appearance of even in addition to odd harmonics is discussed in terms of flow field asymmetry.

Graphical abstract

Keywords

Interfacial rheometry PMMA Fourier-transform-rheology LAOS Interfacial stress rheometer Bowditch-Lissajous plot 

Notes

Acknowledgements

We thank Maria Kaliva for her help with grafting the glass rod and POM channel, and Nicolas Vogel and Markus Retsch for their help with the development of the particle purification procedure. We acknowledge Laurence de Viguerie for the help with the initial ISR measurements.

Funding information

Partial support has been received by the European Commission (ITN “Comploids”, FP7-234810, and Horizon2020-INFRAIA-2016-1, EUSMI project no. 731019) and the Greek General Secretarial for Research and Technology (Heraclitos II program 2011).

References

  1. Barman S, Christopher GF (2014) Simultaneous interfacial rheology and microstructure measurement of densely aggregated particle laden interfaces using a modified double wall ring interfacial rheometer. Langmuir 30(32):9752–9760CrossRefGoogle Scholar
  2. Binks BP (2002) Particles as surfactants - similarities and differences. Curr Opin Colloid Interface Sci 7(1–2):21–41.  https://doi.org/10.1016/s1359-0294(02)00008-0 CrossRefGoogle Scholar
  3. Binks B, Horozov TS (2006) Colloidal Particles at Liquid Interfaces. In: Cambridge Univ. Press, CambridgeGoogle Scholar
  4. Brooks CF (1999) An interfacial stress rheometer to study the shear rheology of Langmuir monolayers. Ph.D. thesis, Stanford University, USA. USAGoogle Scholar
  5. Brooks CF, Fuller GG, Frank CW, Robertson CR (1999) An interfacial stress rheometer to study rheological transitions in monolayers at the air-water interface. Langmuir 15(7):2450–2459.  https://doi.org/10.1021/la980465r CrossRefGoogle Scholar
  6. Cho KS, Hyun K, Ahn KH, Lee SJ (2005) A geometrical interpretation of large amplitude oscillatory shear response. J Rheol 49(3):747–758.  https://doi.org/10.1122/1.1895801 CrossRefGoogle Scholar
  7. Choi SQ, Steltenkamp S, Zasadzinski JA, Squires TM (2011) Active microrheology and simultaneous visualization of sheared phospholipid monolayers. Nat Commun 2:312.  https://doi.org/10.1038/ncomms1321 CrossRefGoogle Scholar
  8. Danov KD, Radulova GM, Kralchevsky PA, Golemanov K, Stoyanov SD (2012) Surface shear rheology of hydrophobin adsorption layers: laws of viscoelastic behaviour with applications to long-term foam stability. Faraday Discuss 158:195–221.  https://doi.org/10.1039/c2fd20017a CrossRefGoogle Scholar
  9. de Gennes P-G, Brochard-Wyart F, Quéré D (2004) Capillarity and wetting phenomena. Springer, NYCrossRefGoogle Scholar
  10. de Viguerie L, Keller R, Jonas U, Berger R, Clark CG, Klein CO, Vlassopoulos D (2011) Effect of the molecular structure on the hierarchical self-assembly of Semifluorinated alkanes at the air/water Interface. Langmuir 27(14):8776–8786.  https://doi.org/10.1021/la201377f CrossRefGoogle Scholar
  11. Erni P, Parker A (2012) Nonlinear viscoelasticity and shear localization at complex fluid interfaces. Langmuir 28(20):7757–7767.  https://doi.org/10.1021/la301023k CrossRefGoogle Scholar
  12. Erni P, Fischer P, Windhab EJ, Kusnezov V, Stettin H, Lauger J (2003) Stress- and strain-controlled measurements of interfacial shear viscosity and viscoelasticity at liquid/liquid and gas/liquid interfaces. Rev Sci Instrum 74(11):4916–4924.  https://doi.org/10.1063/1.1614433 CrossRefGoogle Scholar
  13. Erni P, Jerri HA, Wong K, Parker A (2012) Interfacial viscoelasticity controls buckling, wrinkling and arrest in emulsion drops undergoing mass transfer. Soft Matter 8(26):6958–6967.  https://doi.org/10.1039/c2sm25438g CrossRefGoogle Scholar
  14. Ewoldt RH, Bharadwaj NA (2013) Low-dimensional intrinsic material functions for nonlinear viscoelasticity. Rheol Acta 52(3):201–219.  https://doi.org/10.1007/s00397-013-0686-6 CrossRefGoogle Scholar
  15. Fardin M, Perge C, Casanellas L, Hollis T, Taberlet N, Ortin J, Lerouge S, Manneville S (2014) Flow instabilities in large amplitude oscillatory shear: a cautionary tale. Rheol Acta 53(12):885–898.  https://doi.org/10.1007/s00397-014-0818-7 CrossRefGoogle Scholar
  16. Fischer P, Erni P (2007) Emulsion drops in external flow fields - the role of liquid interfaces. Curr Opin Colloid Interface Sci 12(4–5):196–205.  https://doi.org/10.1016/j.cocis.2007.07.014 CrossRefGoogle Scholar
  17. Fischer P, Brooks CF, Fuller GG, Ritcey AM, Xiao YF, Rahem T (2000) Phase behavior and flow properties of "hairy-rod" monolayers. Langmuir 16(2):726–734.  https://doi.org/10.1021/la990779u CrossRefGoogle Scholar
  18. Fitzgibbon S, Shaqfeh ESG, Fuller GG, Walker TW (2014) Scaling analysis and mathematical theory of the interfacial stress rheometer. J Rheol 58(4):999–1038CrossRefGoogle Scholar
  19. Fujii Y, Nagamura T, Tanaka K (2010) Relaxation of poly (methyl methacrylate) at a water interface. J Phys Chem B 114:3457–3460.  https://doi.org/10.1021/jp909373g CrossRefGoogle Scholar
  20. Fuller GG (2003) Rheology if mobile interfaces. Rheology Rev:77–123Google Scholar
  21. Fuller GG, Vermant J (2011) Editorial: dynamics and rheology of complex fluid-fluid interfaces. Soft Matter 7(17):7583–7585.  https://doi.org/10.1039/c1sm90055b CrossRefGoogle Scholar
  22. Fuller GG, Vermant J (2012) Complex fluid-fluid interfaces: rheology and structure. In J. M. Prausnitz. In: Annual review of chemical and biomolecular engineering, Vol 3, vol 3, pp 519–543Google Scholar
  23. Gordon TS (1986) The Stress Deformation Interfacial Rheometer. The University of Pennsylvania, Ph.D. thesis, USAGoogle Scholar
  24. Grenander U (1959) Probability and statistics: the Harald Cramér volume. Almqvist & Wiksell, UppsalaGoogle Scholar
  25. Hancock BC, Zografi G (1994) The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm Res 11:471–477.  https://doi.org/10.1023/A:1018941810744 CrossRefGoogle Scholar
  26. Hermans E, Vermant J (2014) Interfacial shear rheology of DPPC under physiologically relevant conditions. Soft Matter 10(1):175–186.  https://doi.org/10.1039/c3sm52091a CrossRefGoogle Scholar
  27. Hilles H, Monroy F, Bonales LJ, Ortega F, Rubio RG (2006) Fourier-transform rheology of polymer Langmuir monolayers: analysis of the non-linear and plastic behaviors. Adv Colloid Interf Sci 122(1–3):67–77.  https://doi.org/10.1016/j.cis.2006.06.013 CrossRefGoogle Scholar
  28. Hollenbeck EC, Fong JCN, Lim JY, Yildiz FH, Fuller GG, Cegelski L (2014) Molecular determinants of mechanical properties of V-cholerae biofilms at the air-liquid Interface. Biophys J 107(10):2245–2252.  https://doi.org/10.1016/j.bpj.2014.10.015 CrossRefGoogle Scholar
  29. Hyun K, Wilhelm M (2009) Establishing a new mechanical nonlinear coefficient Q from FT-rheology: first investigation of entangled linear and comb polymer model systems. Macromolecules 42(1):411–422.  https://doi.org/10.1021/ma8017266 CrossRefGoogle Scholar
  30. Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, McKinley GH (2011) A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36(12):1697–1753.  https://doi.org/10.1016/j.progpolymsci.2011.02.002 CrossRefGoogle Scholar
  31. Israelachvili J (2011) Intermolecular and surface forces, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  32. Jaensson N, Vermant J (2018) Tensiometry and rheology of complex interfaces. Curr Opin Colloid Interface Sci 37:136–150 doi.org/10.1016/j.cocis.2018.09.005 CrossRefGoogle Scholar
  33. Jaishankar A, Sharma V, McKinley GH (2011) Interfacial viscoelasticity, yielding and creep ringing of globular protein-surfactant mixtures. Soft Matter 7(17):7623–7634.  https://doi.org/10.1039/c1sm05399j CrossRefGoogle Scholar
  34. Kim HC, Choi YH, Bu W, Meron M, Lin B, Won Y-Y (2017) Increased humidity can soften glassy Langmuir polymer films by two mechanisms: plasticization of the polymer material and suppression of the evaporation cooling effect. Phys Chem Chem Phys 19:10663–10675.  https://doi.org/10.1039/c7cp00785j CrossRefGoogle Scholar
  35. Klein C (2005) Rheology and Fourier-transform rheology on water-based systems. Ph.D. thesis, Mainz, GermanyGoogle Scholar
  36. Klein CO, Spiess HW, Calin A, Balan C, Wilhelm M (2007) Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response. Macromolecules 40(12):4250–4259.  https://doi.org/10.1021/ma062441u CrossRefGoogle Scholar
  37. Klein C, de Viguerie L, Christopoulou C, Jonas U, Clark CG, Mullen K, Vlassopoulos D (2011) Viscoelasticity of semifluorinated alkanes at the air/water interface. Soft Matter 7(17):7737–7746.  https://doi.org/10.1039/c1sm05357d CrossRefGoogle Scholar
  38. Kotula AP, Anna SL (2015) Regular perturbation analysis of small amplitude oscillatory dilatation of an interface in a capillary pressure tensiometer. J Rheol 59:85–117.  https://doi.org/10.1122/1.4902546 CrossRefGoogle Scholar
  39. Kralchevsky PA, Nagayama K (1994) Capillary forces between colloidal particles. Langmuir 10(1):23–36.  https://doi.org/10.1021/la00013a004 CrossRefGoogle Scholar
  40. Krishnaswamy R, Majumdar S, Sood AK (2007) Nonlinear viscoelasticity of sorbitan tristearate monolayers at liquid/gas interface. Langmuir 23(26):12951–12958.  https://doi.org/10.1021/la701889w CrossRefGoogle Scholar
  41. Leal-Calderon F, Schmitt V (2008) Solid-stabilized emulsions. Curr Opin Colloid Interface Sci 13(4):217–227.  https://doi.org/10.1016/j.cocis.2007.09.005 CrossRefGoogle Scholar
  42. Lopez JM, Hirsa AH (2015) Coupling of the interfacial and bulk flow in knife-edge viscometers. Phys Fluids 27(4):042102CrossRefGoogle Scholar
  43. Macosko CW, Guegan P, Khandpur AK, Nakayama A, Marechal P, Inoue T (1996) Compatibilizers for melt blending: premade block copolymers. Macromolecules 29(17):5590–5598.  https://doi.org/10.1021/ma9602482 CrossRefGoogle Scholar
  44. Monteux C, Mangeret R, Laibe G, Freyssingeas E, Bergeron V, Fuller G (2006) Shear surface rheology of poly(N-isopropylacrylamide) adsorbed layers at the air-water interface. Macromolecules 39(9):3408–3414.  https://doi.org/10.1021/ma052552d CrossRefGoogle Scholar
  45. Murray BS (2002) Interfacial rheology of food emulsifiers and proteins. Curr Opin Colloid Interface Sci 7(5–6):426–431.  https://doi.org/10.1016/s1359-0294(02)00077-8 CrossRefGoogle Scholar
  46. Nagel M, Tervoort TA, Vermant J (2017) From drop-shape analysis to stress-fitting elastometry. Adv Colloid Interf Sci 247:33–51.  https://doi.org/10.1016/j.cis.2017.07.008 CrossRefGoogle Scholar
  47. Pepicelli M, Verwijlen T, Tervoort TA, Vermant J (2017) Characterization and modelling of Langmuir interfaces with finite elasticity. Soft Matter 13(35):5977–5990CrossRefGoogle Scholar
  48. Prucker O, Naumann CA, Ruhe J, Knoll W, Frank CW (1999) Photochemical attachment of polymer films to solid surfaces via monolayers of benzophenone derivatives. J Am Chem Soc 121(38):8766–8770.  https://doi.org/10.1021/ja990962+ CrossRefGoogle Scholar
  49. Raghunandan A, Lopez JM, Hirsa AH (2015) Bulk flow driven by a viscous monolayer. J Fluid Mech 785:283–300CrossRefGoogle Scholar
  50. Reinheimer K, Grosso M, Wilhelm M (2011) Fourier transform rheology as a universal non- linear mechanical characterization of droplet size and interfacial tension of dilute monodisperse emulsions. J Colloid Interface Sci 360:818–825.  https://doi.org/10.1016/j.jcis.2011.05.002 CrossRefGoogle Scholar
  51. Retsch M, Zhou ZC, Rivera S, Kappl M, Zhao XS, Jonas U, Li Q (2009) Fabrication of large-area, transferable colloidal monolayers utilizing self-assembly at the air/water Interface. Macromol Chem Phys 210(3–4):230–241.  https://doi.org/10.1002/macp.200800484 CrossRefGoogle Scholar
  52. Reynaert S, Brooks CF, Moldenaers P, Vermant J, Fuller GG (2008) Analysis of the magnetic rod interfacial stress rheometer. J Rheol 52(1):261–285.  https://doi.org/10.1122/1.2798238 CrossRefGoogle Scholar
  53. Rogers SA (2012) A sequence of physical processes determined and quantified in LAOS: an instantaneous local 2D/3D approach. J Rheol 56(5):1129–1151.  https://doi.org/10.1122/1.4726083 CrossRefGoogle Scholar
  54. Rogers SA (2018) Large amplitude oscillatory shear: simple to describe, hard to interpret. Phys Today 71(7):34–40.  https://doi.org/10.1063/PT.3.3971 CrossRefGoogle Scholar
  55. Rogers SA, Erwin BM, Vlassopoulos D, Cloitre M (2011) Oscillatory yielding of a colloidal star glass. J Rheol 55(4):733–752.  https://doi.org/10.1122/1.3579161 CrossRefGoogle Scholar
  56. Rubinstein M, Colby RH (2003) Polymer physics. Oxford Univ. Press, NYGoogle Scholar
  57. Rühs PA, Scheuble N, Windhab EJ, Mezzenga R, Fischer P (2012) Simultaneous control of pH and ionic strength during interfacial rheology of beta-Lactoglobulin fibrils adsorbed at liquid/liquid interfaces. Langmuir 28(34):12536–12543.  https://doi.org/10.1021/la3026705 CrossRefGoogle Scholar
  58. Rühs PA, Affolter C, Windhab EJ, Fischer P (2013a) Shear and dilatational linear and nonlinear subphase controlled interfacial rheology of beta-lactoglobulin fibrils and their derivatives. J Rheol 57(3):1003–1022.  https://doi.org/10.1122/1.4802051 CrossRefGoogle Scholar
  59. Rühs PA, Boni L, Fuller GG, Inglis RF, Fischer P (2013b) In-situ quantification of the interfacial rheological response of bacterial biofilms to environmental stimuli. PLoS One 8(11):e78524.  https://doi.org/10.1371/journal.pone.0078524 CrossRefGoogle Scholar
  60. Russel WB, Saville DA, Schowalter WR (1989) Colloidal dispersion. Cambridge Univ. Press, NYCrossRefGoogle Scholar
  61. Sagis LMC (2011) Dynamic properties of interfaces in soft matter: experiments and theory. Rev Mod Phys 83(4):1367–1403.  https://doi.org/10.1103/RevModPhys.83.1367 CrossRefGoogle Scholar
  62. Sagis LMC, Fischer P (2014) Nonlinear rheology of complex fluid-fluid interfaces. Curr Opin Colloid Interface Sci 19(6):520–529.  https://doi.org/10.1016/j.cocis.2014.09.003 CrossRefGoogle Scholar
  63. Samaniuk JR, Vermant J (2014) Micro and macrorheology at fluid-fluid interfaces. Soft Matter 10(36):7023–7033.  https://doi.org/10.1039/c4sm00646a CrossRefGoogle Scholar
  64. Singh PK, Piyush K, Soulages JM, Ewoldt R, shear H F-s m-a o (2018) MAOS. J Rheol 62:277–293.  https://doi.org/10.1122/1.4999795 CrossRefGoogle Scholar
  65. Srivastava S, Leiske D, Basu JK, Fuller GG (2011) Interfacial shear rheology of highly confined glassy polymers. Soft Matter 7(5):1994–2000.  https://doi.org/10.1039/c0sm00839g CrossRefGoogle Scholar
  66. Stocco A, Rio E, Binks BP, Langevin D (2011) Aqueous foams stabilized solely by particles. Soft Matter 7(4):1260–1267.  https://doi.org/10.1039/c0sm01290d CrossRefGoogle Scholar
  67. Tajuelo J, Pastor JM, Martinez-Pedrero F, Vazquez M, Ortega F, Rubio RG, Rubio MA (2015) Magnetic microwire probes for the magnetic rod interfacial stress rheometer. Langmuir 31(4):1410–1420.  https://doi.org/10.1021/la5038316 CrossRefGoogle Scholar
  68. Tajuelo J, Pastor JM, Rubio MA (2016) A magnetic rod interfacial shear rheometer driven by a mobile magnetic trap. J Rheol 60(6):1095–1113.  https://doi.org/10.1122/1.4958668 CrossRefGoogle Scholar
  69. Tajuelo J, Rubio MA, Pastor JM (2018) Flow field based data processing for the oscillating conical bob interfacial shear rheometer. J Rheol 62(1):295–311CrossRefGoogle Scholar
  70. Theodoratou A, Jonas U, Loppinet B, Geue T, Stangenberg R, Keller R, Li D, Berger R, Vermant J, Vlassopoulos D (2016) Semifluorinated alkanes at the air-water Interface: tailoring structure and rheology at the molecular scale. Langmuir 32(13):3139–3151.  https://doi.org/10.1021/acs.langmuir.5b04744 CrossRefGoogle Scholar
  71. Thijssen JHJ, Vermant J (2018) Interfacial rheology of model particles at liquid interfaces and its relation to (bicontinuous) Pickering emulsions. Journal of Physics-Condensed Matter 30(2):023002.  https://doi.org/10.1088/1361-648X/aa9c74 CrossRefGoogle Scholar
  72. Torcello-Gomez A, Maldonado-Valderrama J, Galvez-Ruiz MJ, Martin-Rodriguez A, Cabrerizo-Vilchez MA, de Vicente J (2011) Surface rheology of sorbitan tristearate and beta-lactoglobulin: shear and dilatational behavior. J Non-Newtonian Fluid Mech 166(12–13):713–722.  https://doi.org/10.1016/j.jnnfm.2011.03.008 CrossRefGoogle Scholar
  73. Truzzolillo D, Sharaf H, Jonas U, Loppinet B, Vlassopoulos D (2016) Tuning the structure and rheology of polystyrene particles at the air-water Interface by varying the pH. Langmuir 32(27):6956–6966.  https://doi.org/10.1021/acs.langmuir.6b01969 CrossRefGoogle Scholar
  74. Underhill PT, Hirsa AH, Lopez JM (2017) Modelling steady shear flows of Newtonian liquids with non-Newtonian interfaces. J Fluid Mech 814:5–23CrossRefGoogle Scholar
  75. van den Berg MEH, Kuster S, Windhab EJ, Sagis LMC, Fischer P (2018) Nonlinear shear and dilatational rheology of viscoelastic interfacial layers of cellulose nanocrystals. Phys. Fluids 30:072103Google Scholar
  76. van Dusschoten D, Wilhelm M (2001) Increased torque transducer sensitivity via oversampling. Rheol Acta 40(4):395–399.  https://doi.org/10.1007/s003970000158 CrossRefGoogle Scholar
  77. Vandebril S, Franck A, Fuller GG, Moldenaers P, Vermant J (2010) A double wall-ring geometry for interfacial shear rheometry. Rheol Acta 49(2):131–144.  https://doi.org/10.1007/s00397-009-0407-3 CrossRefGoogle Scholar
  78. Vermant J, Vandebril S, Dewitte C, Moldenaers P (2008) Particle-stabilized polymer blends. Rheol Acta 47(7):835–839.  https://doi.org/10.1007/s00397-008-0285-0 CrossRefGoogle Scholar
  79. Verwijlen T, Moldenaers P, Stone HA, Vermant J (2011) Study of the flow field in the magnetic rod interfacial stress rheometer. Langmuir 27(15):9345–9358.  https://doi.org/10.1021/la201109u CrossRefGoogle Scholar
  80. Wilhelm M (2002) Fourier-transform rheology. Macromol Mater Eng 287(2):83–105.  https://doi.org/10.1002/1439-2054(20020201)287:2<83 CrossRefGoogle Scholar
  81. Wilhelm M, Maring D, Spiess H (1998) Fourier-transform rheology. Rheol Acta 37:399–405.  https://doi.org/10.1007/s003970050126 CrossRefGoogle Scholar
  82. Wilhelm M, Reinheimer K, Kubel J (2012) Optimizing the sensitivity of FT-rheology to quantify and differentiate for the first time the nonlinear mechanical response of dispersed beer foams of light and dark beer. Z Phys Chem 226(7–8):547–567.  https://doi.org/10.1524/zpch.2012.0247 CrossRefGoogle Scholar
  83. Witte KN, Kewalramani S, Kuzmenko I, Sun W, Fukuto M, Won Y-Y (2010) Formation and collapse of single-monomer-thick monolayers of poly(n-butyl acrylate) at the air-water Interface. Macromolecules 43:2990–3003.  https://doi.org/10.1021/ma901842q CrossRefGoogle Scholar
  84. Witten TA (2004) Structured fluids. Paper presented at the Oxford Univ. Press, NYGoogle Scholar
  85. Wu C, Lim JY, Fuller GG, Cegelski L (2012) Quantitative analysis of amyloid-integrated biofilms formed by Uropathogenic Escherichia coli at the air-liquid Interface. Biophys J 103(3):464–471.  https://doi.org/10.1016/j.bpj.2012.06.049 CrossRefGoogle Scholar
  86. Xu H, Lask M, Kirkwood J, Fuller G (2007) Particle bridging between oil and water interfaces. Langmuir 23(9):4837–4841.  https://doi.org/10.1021/la063593l CrossRefGoogle Scholar
  87. Zang DY, Langevin D, Binks BP, Wei BB (2010) Shearing particle monolayers: strain-rate frequency superposition. Phys Rev E 81(1).  https://doi.org/10.1103/PhysRevE.81.011604

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Christopher O. Klein
    • 1
    • 2
    Email author
  • Antigoni Theodoratou
    • 1
    • 3
  • Patrick A. Rühs
    • 4
  • Ulrich Jonas
    • 1
    • 5
  • Benoit Loppinet
    • 1
  • Manfred Wilhelm
    • 2
  • Peter Fischer
    • 6
  • Jan Vermant
    • 7
  • Dimitris Vlassopoulos
    • 1
    • 3
  1. 1.Foundation for Research and Technology Hellas (FORTH)Institute of Electronic Structure and LaserHeraklionGreece
  2. 2.Karlsruher Institut für Technologie KITInstitut für Technische Chemie und PolymerchemieKarlsruheGermany
  3. 3.Department of Materials Science & TechnologyUniversity of CreteHeraklionGreece
  4. 4.Laboratory of Complex MaterialsETH ZurichZürichSwitzerland
  5. 5.Department Chemistry-Biology, Macromolecular ChemistryUniversity of SiegenSiegenGermany
  6. 6.Institute of Food, Nutrition and HealthETH ZurichZürichSwitzerland
  7. 7.Laboratory of Soft Materials, Department of MaterialsETH ZurichZürichSwitzerland

Personalised recommendations