Advertisement

Rheologica Acta

, Volume 53, Issue 8, pp 593–605 | Cite as

Capillary-driven percolating networks in ternary blends of immiscible polymers and silica particles

  • Trystan Domenech
  • Sachin VelankarEmail author
Original Contribution

Abstract

We investigate the structure and rheology of a melt-blended ternary system composed of a continuous polymer phase, silica particles in the few-micron size range, and a small amount of a second immiscible polymer phase which preferentially wets the particles. The morphology of the ternary system is found to consist of a volume-spanning “pendular network” of particles bridged by menisci of the wetting polymer, as well as “capillary aggregates” which are large compact particle aggregates saturated by the wetting polymer. The ternary blends have strongly non-Newtonian melt rheology due to the pendular network. The relative extent of capillary aggregation depends on the melt-blending history, and the rheological properties can be used to track the changes in the blend structure. The pendular network is seen at a particle loading of only 10 vol.%, demonstrating that capillary bridging lowers the percolation threshold of a particle-filled polymer.

Keywords

Capillary bridging Percolation Pendular network Ternary blends 

Notes

Acknowledgments

This research was supported by the National Science Foundation (NSF-CBET grant no. 0932901). We thank Dr. Jason Devlin, Morgan Jessup, and Mark Ross, Center for Biological Imaging at the University of Pittsburgh, for assistance with confocal imaging. We are grateful to Prof. George Petekedis, University of Crete, for pointing us to the literature on wall slip.

Supplementary material

397_2014_776_MOESM1_ESM.pdf (948 kb)
ESM 1 (PDF 947 kb)
ESM 2

(MP4 27534 kb)

ESM 3

(MP4 12661 kb)

References

  1. Batchelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83:97–117CrossRefGoogle Scholar
  2. Baudouin AC, Auhl D, Tao FF, Devaux J, Bailly C (2011) Polymer blend emulsion stabilization using carbon nanotubes interfacial confinement. Polymer 52:149–156CrossRefGoogle Scholar
  3. Binks BP, Horozov TS (2006) Colloidal particles at liquid interfaces. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. Buscall R, Mills PDA, Goodwin JW, Lawson DW (1988) Scaling behaviour of the rheology of aggregate networks formed from colloidal particles. J Chem Soc Faraday Trans I 84:4249–4260CrossRefGoogle Scholar
  5. Cai S, Bhushan B (2008) Meniscus and viscous forces during separation of hydrophilic and hydrophobic smooth/rough surfaces with symmetric and asymmetric contact angles. Philos Trans A Math Phys Eng Sci 366:1627–1647CrossRefGoogle Scholar
  6. Cates ME, Clegg PS (2008) Bijels: a new class of soft materials. Soft Matter 4:2132CrossRefGoogle Scholar
  7. Chung H, Ohno K, Fukuda T, Composto RJ (2005) Self-regulated structures in nanocomposites by directed nanoparticle assembly. Nano Lett 5:1878–1882CrossRefGoogle Scholar
  8. Coussot P (2005) Rheometry of pastes, suspensions, and granular materials: applications in industry and environment. WileyGoogle Scholar
  9. Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28:619–622CrossRefGoogle Scholar
  10. DeLeo CL, Velankar SS (2008) Morphology and rheology of compatibilized polymer blends: Diblock compatibilizers vs crosslinked reactive compatibilizers. J Rheol 52:1385–1404CrossRefGoogle Scholar
  11. Doraiswamy D, Mujumdar AN, Tsao I, Beris AN, Danforth SC, Metzner AB (1991) The Cox–Merz rule extended: a rheological model for concentrated suspensions and other materials with a yield stress. J Rheol 35:647–685CrossRefGoogle Scholar
  12. Elias L, Fenouillot F, Majeste JC, Cassagnau P (2007) Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Polymer 48:6029–6040CrossRefGoogle Scholar
  13. Fenouillot F, Cassagnau P, Majeste JC (2009) Uneven distribution of nanoparticles in immiscible fluids: morphology development in polymer blends. Polymer 50:1333–1350CrossRefGoogle Scholar
  14. Fornes TD, Yoon PJ, Keskkula H, Paul DR (2001) Nylon 6 nanocomposites: the effect of matrix molecular weight. Polymer 42:09929–09940CrossRefGoogle Scholar
  15. Gubbels F, Jerome R, Teyssie P, Vanlathem E, Deltour R, Calderone A, Parente V, Bredas JL (1994) Selective localization of carbon-black in immiscible polymer blends—a useful tool to design electrical conductive composites. Macromolecules 27:1972–1974CrossRefGoogle Scholar
  16. Heidlebaugh SJ, Domenech T, Iasella SV, Velankar SS (2014) Aggregation and separation in ternary particle/oil/water systems with fully wettable particles. Langmuir 30:63–74CrossRefGoogle Scholar
  17. Herzig EM, White KA, Schofield AB, Poon WCK, Clegg PS (2007) Bicontinuous emulsions stabilized solely by colloidal particles. Nat Mater 6:966–971CrossRefGoogle Scholar
  18. Hong JS, Namkung H, Ahn KH, Lee SJ, Kim C (2006) The role of organically modified layered silicate in the breakup and coalescence of droplets in PBT/PE blends. Polymer 47:3967–3975CrossRefGoogle Scholar
  19. Horozov TS, Binks BP (2006) Particle-stabilized emulsions: a bilayer or a bridging monolayer? Angew Chem Int Ed 45:773–776CrossRefGoogle Scholar
  20. Huitric J, Ville J, Médéric P, Moan M, Aubry T (2009) Rheological, morphological and structural properties of PE/PA/nanoclay ternary blends: effect of clay weight fraction. J Rheol 53:1101CrossRefGoogle Scholar
  21. Isichenko MB (1992) Percolation, statistical topography, and transport in random media. Rev Mod Phys 64:961–1043CrossRefGoogle Scholar
  22. Israelachvili J (1992) Intermolecular and surface forces. Academic Press, AmsterdamGoogle Scholar
  23. Iveson SM, Beathe JA, Page NW (2002) The dynamic strength of partially saturated powder compacts: the effect of liquid properties. Powder Technol 127:149–161CrossRefGoogle Scholar
  24. Jana SC, Sau M (2004) Effects of viscosity ratio and composition on development of morphology in chaotic mixing of polymers. Polymer 45:1665–1678CrossRefGoogle Scholar
  25. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530CrossRefGoogle Scholar
  26. Koos E, Willenbacher N (2011) Capillary forces in suspension rheology. Science 331:897–900CrossRefGoogle Scholar
  27. Koos E, Willenbacher N (2012) Particle configurations and gelation in capillary suspensions. Soft Matter 8:3988–3994CrossRefGoogle Scholar
  28. Koos E, Johannsmeier J, Schwebler L, Willenbacher N (2012) Tuning suspension rheology using capillary forces. Soft Matter 8:6620–6628CrossRefGoogle Scholar
  29. Krishnamoorti R, Giannelis EP (1997) Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules 30:4097–4102CrossRefGoogle Scholar
  30. Larson RG (1999) Structure and rheology of complex fluids. Oxford University Press, New YorkGoogle Scholar
  31. Lee MN, Mohraz A (2010) Bicontinuous macroporous materials from bijel templates. Adv Mater 22:4836–4841CrossRefGoogle Scholar
  32. Lee MN, Chan HK, Mohraz A (2012) Characteristics of pickering emulsion gels formed by droplet bridging. Langmuir 28:3085–3091CrossRefGoogle Scholar
  33. Lertwimolnun W, Vergnes B (2005) Influence of compatibilizer and processing conditions on the dispersion of nanoclay in a polypropylene matrix. Polymer 46:3462–3471CrossRefGoogle Scholar
  34. Maric M, Macosko CW (2001) Improving polymer blend dispersions in mini-mixers. Polym Eng Sci 41:118–130CrossRefGoogle Scholar
  35. McCulfor J, Himes P, Anklam MR (2011) The effects of capillary forces on the flow properties of glass particle suspensions in mineral oil. AIChE J 57:2334–2340CrossRefGoogle Scholar
  36. Mewis J, Wagner NJ (2012) Colloidal suspension rheology. Cambridge University Press, CambridgeGoogle Scholar
  37. Nagarkar SP, Velankar SS (2012) Morphology and rheology of ternary fluid-fluid-solid systems. Soft Matter 8:8464–8477CrossRefGoogle Scholar
  38. Nagarkar S, Velankar SS (2013) Rheology and morphology of model immiscible polymer blends with monodisperse spherical particles at the interface. J Rheol 57:901–926CrossRefGoogle Scholar
  39. Nazockdast E, Nazockdast H, Goharpey F (2008) Linear and nonlinear melt-state viscoelastic properties of polypropylene/organoclay nanocomposites. Polym Eng Sci 48:1240–1249CrossRefGoogle Scholar
  40. Piau JM, Dorget M, Palierne JF, Pouchelon A (1999) Shear elasticity and yield stress of silica–silicone physical gels: fractal approach. J Rheol 43:305CrossRefGoogle Scholar
  41. Pickering SU (1907) Emulsions. Journal of the Chemical Society, Abstracts 91, 92:2001-2021Google Scholar
  42. Pignon F, Magnin A, Piau J-M (1998) Thixotropic behavior of clay dispersions: combinations of scattering and rheometric techniques. J Rheol 42:1349CrossRefGoogle Scholar
  43. Potschke P, Paul DR (2003) Formation of co-continuous structures in melt-mixed immiscible polymer blends. J Macromol Sci Polym Rev C43:87–141CrossRefGoogle Scholar
  44. Potschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43:3247–3255CrossRefGoogle Scholar
  45. Ramsden W (1903) Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation).—Preliminary account. Proc R Soc Lond Ser A Math Phys Eng Sci 72:156–164Google Scholar
  46. Ray SS, Pouliot S, Bousmina M, Utracki LA (2004) Role of organically modified layered silicate as an active interfacial modifier in immiscible polystyrene/polypropylene blends. Polymer 45:8403–8413CrossRefGoogle Scholar
  47. Rodlert M, Plummer CJG, Leterrier Y, Månson J-AE, Grünbauer HJM (2004) Rheological behavior of hyperbranched polymer/montmorillonite clay nanocomposites. J Rheol 48:1049–1065, 1978-presentCrossRefGoogle Scholar
  48. Russel WB, Saville DA, Schowalter WR (1992) Colloidal dispersions. Cambridge University PressGoogle Scholar
  49. Scott GD (1960) Packing of spheres. Nature 188:908–911CrossRefGoogle Scholar
  50. Si M, Araki T, Ade H, Kilcoyne ALD, Fisher R, Sokolov JC, Rafailovich MH (2006) Compatibilizing bulk polymer blends by using organoclays. Macromolecules 39:4793–4801CrossRefGoogle Scholar
  51. Solomon MJ, Almusallam AS, Seefeldt KF, Somwangthanaroj A, Varadan P (2001) Rheology of polypropylene/clay hybrid materials. Macromolecules 34:1864–1872CrossRefGoogle Scholar
  52. Stancik EJ, Fuller GG (2004) Connect the drops: using solids as adhesives for liquids. Langmuir 20:4805–4808CrossRefGoogle Scholar
  53. Sundararaj U, Macosko CW (1995) Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization. Macromolecules 28:2647–2657CrossRefGoogle Scholar
  54. Sundararaj U, Dori Y, Macosko CW (1995) Sheet formation in immiscible polymer blends—model experiments on initial blend morphology. Polymer 36:1957–1968CrossRefGoogle Scholar
  55. Thareja P, Velankar SS (2007) Particle-induced bridging in immiscible polymer blends. Rheol Acta 46:405–412CrossRefGoogle Scholar
  56. Thareja P, Moritz K, Velankar SS (2010) Interfacially active particles in droplet/matrix blends of model immiscible homopolymers: particles can increase or decrease drop size. Rheol Acta 49:285–298CrossRefGoogle Scholar
  57. Van Puyvelde P, Velankar S, Moldenaers P (2001) Rheology and morphology of compatibilized polymer blends. Curr Opin Colloid Interf Sci 6:457–463CrossRefGoogle Scholar
  58. Vankao S, Nielsen LE, Hill CT (1975) Rheology of concentrated suspensions of spheres. 2. Suspensions agglomerated by an immiscible 2nd liquid. J Colloid Interface Sci 53:367–373CrossRefGoogle Scholar
  59. Vermant J, Cioccolo G, Nair KG, Moldenaers P (2004) Coalescence suppression in model immiscible polymer blends by nano-sized colloidal particles. Rheol Acta 43:529–538CrossRefGoogle Scholar
  60. Vermant J, Vandebril S, Dewitte C, Moldenaers P (2008) Particle-stabilized polymer blends. Rheol Acta 47:835–839CrossRefGoogle Scholar
  61. Vinckier I, Laun HM (1999) Manifestation of phase separation processes in oscillatory shear: droplet-matrix systems versus co-continuous morphologies. Rheol Acta 38:274–286CrossRefGoogle Scholar
  62. Vinckier I, Laun HM (2001) Assessment of the Doi-Ohta theory for co-continuous blends under oscillatory flow. J Rheol 45:1373–1385CrossRefGoogle Scholar
  63. Witt JA, Mumm DR, Mohraz A (2013) Bijel reinforcement by droplet bridging: a route to bicontinuous materials with large domains. Soft Matter 9:6773CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of PittsburghPittsburghUSA

Personalised recommendations