Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Surfactants and amino acids in the control of nanotubular morphology of polypyrrole and their effect on the conductivity

  • 24 Accesses


Polypyrrole nanotubes were prepared by the oxidation of pyrrole in aqueous solutions of methyl orange and in the presence of 1–5 wt% of surface-active additives, surfactants, or amino acids. Three types of additives – anionic, non-ionic, and cationic – have been tested in the control of polypyrrole morphology and conductivity. The morphology of nanotubes was little dependent on surfactant type but the changes in size and aspect ratios were more pronounced with amino acids. Except for anionic surfactant, bis(2-ethylhexyl) sulfosuccinate, which behaved indifferently, all additives reduced the conductivity of polypyrrole, some even by four orders of magnitude. Based on FTIR spectroscopy, it is proposed that the hydrophobic interactions and/or hydrogen bonding between the additives and growing polypyrrole chains play the important role in reducing chain ordering, while the ionic interactions have limited effect.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Meng OF, Cai KF, Chen YX, Chen LD (2017) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268–285. https://doi.org/10.1016/j.nanoen.2017.04.040

  2. 2.

    Nasar A, Mashkoor F (2019) Application of polyaniline-based adsorbents for dye removal from water and wastewater – a review. Environ Sci Pollut Res 26:5333–5356. https://doi.org/10.1007/s11356-018-3990-y

  3. 3.

    Eskandari E, Kosari M, Farahani MHDA, Khiavi ND, Saeedikhani M, Katal R, Zarinejad M (2020) A review on polyaniline-based materials applications in heavy metal removal and catalytic processes. Sep Purif Technol 231:115901. https://doi.org/10.1016/j.seppur.2019.115901

  4. 4.

    Stejskal J (2020) Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: polymer morphology control, dye adsorption and photocatalytic decomposition. Chem Pap 74:1–54. https://doi.org/10.1007/s11696-019-00982-9

  5. 5.

    Humpolíček P, Radaskiewicz KA, Capáková Z, Pacherník J, Bober P, Kašpárková V, Rejmontová P, Lehocký M, Ponížil P, Stejskal J (2018) Polyaniline cryogels: biocompatibility of novel conducting macroporous material. Sci Rep 8:135. https://doi.org/10.1038/s41598-017-18290-1

  6. 6.

    Nair SS, Mishra SK, Kumar D (2019) Recent progress in conductive polymeric materials for biomedical applications. Polym Adv Technol 30:2932–2953. https://doi.org/10.1002/pat.4725

  7. 7.

    Runsewe D, Betancourt T, Irvin JA (2019) Biomedical application of electroactive polymers in electrochemical sensors: a review. Materials 12:2629. https://doi.org/10.3390/ma12162629

  8. 8.

    Li Y, Bober P, Trchová M, Stejskal J (2017) Polypyrrole prepared in the presence of methyl orange and ethyl orange: nanotubes versus globules in conductivity enhancement. J Mater Chem C 5:4236–4245. https://doi.org/10.1039/c7tc00206h

  9. 9.

    Stejskal J, Trchová M (2018) Conducting polypyrrole nanotubes: a review. Chem Pap 72:1563–1595. https://doi.org/10.1007/s11696-018-0442-6

  10. 10.

    Mondal S, Rana U, Das P, Malik S (2019) Network of polyaniline nanotubes for wastewater treatment and oil/water separation. ACS Appl Polym Mater 1:1624–1633. https://doi.org/10.1021/acsapm.9b00199

  11. 11.

    Yang XM, Zhu ZX, Dai TY, Lu Y (2005) Facile fabrication of functional polypyrrole nanotubes via a reactive self-degraded template. Macromol Rapid Commun 26:1736–1740. https://doi.org/10.1002/marc.200500514

  12. 12.

    Wang Y, Yang C, Liu P (2011) Acid blue AS doped polypyrrole (PPy/AS) nanomaterials with different morphologies as electrode materials for supercapacitors. Chem Eng J 172:1137–1144. https://doi.org/10.1016/j.cej.2011.06.061

  13. 13.

    Bober P, Li Y, Acharya U, Panthi Y, Pfleger J, Humpolíček P, Trchová M, Stejskal J (2018) Acid Blue dyes in polypyrrole synthesis: the control of polymer morphology at nanoscale in the promotion of high conductivity and the reduction of cytotoxicity. Synth Met 237:40–49. https://doi.org/10.1016/j.synthmet.2018.01.010

  14. 14.

    Minisy IM, Bober P, Acharya U, Trchová M, Hromádková J, Pfleger J, Stejskal J (2019) Cationic dyes as morphology-guiding agents for one-dimensional polypyrrole with improved conductivity. Polymer 174:11–17. https://doi.org/10.1016/j.synthmet.2019.04.045

  15. 15.

    Kopecká J, Kopecký D, Vrňata M, Fitl P, Stejskal J, Trchová M, Bober P, Morávková Z, Prokeš J, Sapurina I (2014) Polypyrrole nanotubes: mechanism of formation. RSC Adv 4:1551–1558. https://doi.org/10.1039/c3ra45841e

  16. 16.

    Joulazadeh M, Navarchian AH (2015) Polypyrrole nanotubes versus nanofibers: a proposed mechanism for predicting the final morphology. Synth Met 199:37–44. https://doi.org/10.1016/j.synthmet.2014.10.036

  17. 17.

    Stejskal J (2018) Strategies towards the control of one-dimensional polypyrrole nanomorphology and conductivity. Polym Int 67:1461–1469. https://doi.org/10.1002/pi.5654

  18. 18.

    Kudoh Y (1996) Properties of polypyrrole prepared by the chemical polymerization using aqueous solution containing Fe2(SO4)3 and anionic surfactant. Synth Met 79:17–22. https://doi.org/10.1016/0379-6779(96)80124-X

  19. 19.

    Shen YQ, Wan MX (1998) In situ doping polymerization of pyrrole with sulfonic acid as a dopant. Synth Met 96:127–132. https://doi.org/10.1016/S0379-6779(98)00076-9

  20. 20.

    Omastová M, Trchová M, Kovářová J, Stejskal J (2003) Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth Met 138:447–455. https://doi.org/10.1016/S0379-6779(02)00498-8

  21. 21.

    Mahmoodian M, Pourabbas B, Mohajerzadeh S (2015) Effect of anionic dopants on the thickness and electrical properties of polypyrrole ultra-thin films prepared by in situ chemical polymerization. Thin Solid Films 83:255–263. https://doi.org/10.1016/j.tsf.2015.03.043

  22. 22.

    Omastová M, Trchová M, Pionteck J, Prokeš J, Stejskal J (2004) Effect of polymerization conditions on the properties of polypyrrole prepared in the presence of sodium bis(2-ethylhexyl) sulfosuccinate. Synth Met 143:153–161. https://doi.org/10.1016/j.synthmet.2003.11.005

  23. 23.

    Bay L, Mogensen N, Skaarup S, Sommer-Larsen P, Jørgensen M, West K (2002) Polypyrrole doped with alkyl benzenesulfonates. Macromolecules 35:9345–9351. https://doi.org/10.1021/ma0207327

  24. 24.

    Zhong WB, Liu SM, Chen XH, Wang YX, Yang WT (2006) High-yield synthesis of superhydrophilic polypyrrole nanowire networks. Macromolecules 30:3224–3230. https://doi.org/10.1021/ma052076

  25. 25.

    Khadem F, Pishvaei M, Salami-Kalajahi M, Najafi F (2017) Morphology control of conducting polypyrrole nanostructures via operational conditions in the emulsion polymerization. J Appl Polym Sci 134:44697. https://doi.org/10.1002/APP.44697

  26. 26.

    Yuan L, Liu K, Bei FL, Wu XD (2017) Formation mechanism of flower-like nanostructured polyaniline prepared under guidance of L-valine. Acta Polym Sin (4):605–615. https://doi.org/10.11777/j.issn1000-3304.2017.16206

  27. 27.

    Pérez-Martínez CC, del Castillo-Castro T, Castillo-Ortega MM, Rodríguez-Félix DE, Herrera-Franco PJ, Ovando-Medina VM (2013) Preparation of polyaniline submicro/nanostructures using L-glutamic acid: loading and releasing studies of amoxicillin. Synth Met 184:41–47. https://doi.org/10.1016/j.synthmet.2013.09.027

  28. 28.

    Erden F, Lai SC, Chi H, Wang FK, He CB (2017) Tailoring the diameters of polyaniline nanofibers for sensor application. ACS Omega 2:6506–6513. https://doi.org/10.1021/acsomega.7b00544

  29. 29.

    Chigondo M, Paumo HK, Bhaumik M, Pillay K, Maity A (2019) Magnetic arginine-functionalized polypyrrole with improved and selective chromium(VI) ions removal from water. J Mol Liq 275:778–791. https://doi.org/10.1016/j.molliq.2018.11.032

  30. 30.

    Sapurina I, Li Y, Alekseeva E, Bober P, Trchová M, Morávková Z, Stejskal J (2017) Polypyrrole nanotubes: the tuning of morphology and conductivity. Polymer 113:247–258. https://doi.org/10.1016/j.polymer.2017.02.064

  31. 31.

    Morávková Z, Trchová M, Dybal J, Bláha M, Stejskal J (2018) The interaction of thin polyaniline films with various H-phosphonates: spectroscopy and quantum chemical calculations. J Appl Polym Sci 135:46728. https://doi.org/10.1002/app.46728

  32. 32.

    Chen Y, Long WC, Xu H (2019) Efficient removal of Acid Red 18 from aqueous solution by in-situ polymerization of polypyrrole-chitosan composites. J Mol Liq 287:110888. https://doi.org/10.1016/j.molliq.2019.110888

  33. 33.

    Skopalová K, Capáková Z, Bober P, Pelková J, Stejskal J, Kašpárková V, Lehocký M, Junkar I, Mozetič M, Humpolíček P (2019) In-vitro hemocompatibility of polyaniline functionalized by bioactive molecules. Polymers 11:1861. https://doi.org/10.3390/polym11111861

  34. 34.

    Trchová M, Stejskal J (2018) Resonance Raman spectroscopy of conducting polypyrrole nanotubes: disordered surface versus ordered body. J Phys Chem A 122:9298–9306. https://doi.org/10.1021/acs.jpca.8b09794

Download references


This study was financially supported by the Czech Science Foundation (17-04109S).

Author information

Correspondence to Jaroslav Stejskal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stejskal, J., Trchová, M. Surfactants and amino acids in the control of nanotubular morphology of polypyrrole and their effect on the conductivity. Colloid Polym Sci 298, 319–325 (2020). https://doi.org/10.1007/s00396-020-04607-6

Download citation


  • Polypyrrole
  • Conductivity
  • Conducting polymer
  • Surfactants
  • Amino acids
  • Nanotubes