Synthesis of sub-100 nm PMMA nanoparticles initiated by ammonium persulfate/ascorbic acid in acetone-water mixture

  • Xia Li
  • Yun HuangEmail author
  • Yi DanEmail author
Original Contribution


The polymer nanoparticles with size less than 100 nm can be prepared by surfactant-free emulsion polymerization (SFEP) with co-solvent, but it needs to be conducted in high temperature at over the azeotropic point of the solution. In the present study, the redox initiator of ammonium persulfate/ascorbic acid (APS/ASA) was applied to reduce the reaction temperature of SFEP with acetone as co-solvent. The effects of temperature, acetone content, monomer concentration, and initiator on the particle size of poly(methyl methacrylate) (PMMA) were investigated to control average diameter of PMMA nanoparticles (PNs) efficiently. The results showed that the PMMA nanoparticles with 45 nm in diameter and uniform size (PDI < 0.05) can be synthesized conveniently through controlling the ratio of APS/ASA.


Sub-100 nm Polymer nanoparticles Soap-free emulsion polymerization Redox initiator Ascorbic acid Acetone 


Financial information

We gratefully acknowledge the National Key R&D Program of China (no. 2016YFC0204901) and National Natural Science Foundation of China (no. 51803132) for the financial support.

Supplementary material

396_2020_4600_MOESM1_ESM.docx (36 kb)
ESM 1 (DOCX 36.3 kb)


  1. 1.
    Wang L, Gao J, An Z, Zhao X, Yao H, Zhang M (2018) Polymer microsphere for water-soluble drug delivery via carbon dot-stabilizing W/O emulsion. J Mater Sci 54:5160–5175CrossRefGoogle Scholar
  2. 2.
    Li X, Wei Y, Lv P, Wu Y, Ogino K, Ma G (2019) Preparation of ropivacaine loaded PLGA microspheres as controlled-release system with narrow size distribution and high loading efficiency. Colloid Surf A 562:237–246CrossRefGoogle Scholar
  3. 3.
    Huang J, Tian C, Wang J, Liu J, Li Y, Liu Y (2018) Fabrication of selective electroless copper plating on PET sheet: effect of PET surface structure on resolution and adhesion of copper coating. Appl Surf Sci 458:734–742CrossRefGoogle Scholar
  4. 4.
    Wang X, Yu K, An R, Han L, Zhang Y, Shi L (2019) Self-assembling GO/modified HEC hybrid stabilized pickering emulsions and template polymerization for biomedical hydrogels. Carbohydr Polym 207:694–703PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Wang Q, Li Q, Yasir Akram M, Ali S, Nie J, Zhu X (2018) Decomposable PVA-based super-hydrophobic 3D porous material for effective water/oil separation. Langmuir 51:15700–15707CrossRefGoogle Scholar
  6. 6.
    Guo Z, Gu H, Chen Q, He Z, Xu W, Zhang J (2019) Macroporous monoliths with pH-induced switchable wettability for recyclable oil separation and recovery. J Colloid Interface Sci 534:183–194PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6:815–823PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Zeng Q, Wu D, Zou C, Xu F, Fu R, Li Z (2010) Template-free fabrication of hierarchical porous carbon based on intra-/inter-sphere crosslinking of monodisperse styrene-divinylbenzene copolymer nanospheres. Chem Commun 46:5927–5929CrossRefGoogle Scholar
  9. 9.
    Nandiyanto ABD, Suhendi A, Ogi T, Iwaki T, Okuyama S (2012) Synthesis of additive-free cationic polystyrene particles with controllable size for hollow template applications. Colloid Surf A 396:96–105CrossRefGoogle Scholar
  10. 10.
    Yang X, Xue X, Luo Y, Lin TY, Zhang H, Lac D (2017) Sub-100nm, long tumor retention SN-38-loaded photonic micelles for tri-modal cancer therapy. J Control Release 261:297–306PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Wang J, Mao W, Lock LL, Tang J, Sui M, Sun W (2015) The role of micelle size in tumor accumulation, penetration, and treatment. ACS Nano 9:7195–7206PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Larpent C, Amigoni GS, De SDA (2003) Synthesis of metal-complexing nanoparticles by post-functionalisation of reactive nanolatexes produced by microemulsion polymerisation. C R Chimie 6:1275–1283CrossRefGoogle Scholar
  13. 13.
    Antonietti M, Basten R, Lohmann S (1995) Polymerization in microemulsions - a new approach to ultrafine, highly functionalized polymer dispersions. Macromol Chem Phys 196:441–466CrossRefGoogle Scholar
  14. 14.
    Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913CrossRefGoogle Scholar
  15. 15.
    Arunbabu D, Jana T (2011) Charged polystyrene nanoparticles: role of ionic comonomers structures. J Colloid Interface Sci 361:534–542PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Ishii H, Ishii M, Nagao D, Konno M (2014) Advanced synthesis for monodisperse polymer nanoparticles in aqueous media with sub-millimolar surfactants. Polymer 55:2772–2779CrossRefGoogle Scholar
  17. 17.
    Zhou C, Che R, Zhong L, Xu W, Guo D, Lei J (2011) Effect of particle structure on the peel strength and heat resistance properties of vinyl acetate/acrylate latexes laminating adhesives. J Appl Polym Sci 119:2857–2865CrossRefGoogle Scholar
  18. 18.
    Aguilar J, Rabelero M, Nuño DSM, Mendizábal E, Martínez RA, López RG (2011) Narrow size-distribution poly(methyl methacrylate) nanoparticles made by semicontinuous heterophase polymerization. J Appl Polym Sci 119:1827–1834CrossRefGoogle Scholar
  19. 19.
    Jang J, Bae J, Ko S (2005) Synthesis and curing of poly(glycidyl methacrylate) nanoparticles. J Polym Sci A 43:2258–2265CrossRefGoogle Scholar
  20. 20.
    Deng J, Chen B, Luo X, Yang W (2009) Synthesis of nano-latex particles of optically active helical substituted polyacetylenes via catalytic microemulsion polymerization in aqueous systems. Macromolecules 42:933–938CrossRefGoogle Scholar
  21. 21.
    Pu G, Dubay MR, Zhang J, Severtson SJ, Houtman CJ (2012) Polyacrylates with high biomass contents for pressure-sensitive adhesives prepared via mini-emulsion polymerization. Ind Eng Chem Res 51:12145–12149CrossRefGoogle Scholar
  22. 22.
    Roberge S, Dubé MA (2006) The effect of particle size and composition on the performance of styrene/butyl acrylate miniemulsion-based PSAs. Polymer 47:799–807CrossRefGoogle Scholar
  23. 23.
    Hazra C, Kundu D, Chatterjee A, Chaudhari A, Mishra S (2014) Poly(methyl methacrylate) (core)–biosurfactant (shell) nanoparticles: size controlled sub-100nm synthesis, characterization, antibacterial activity, cytotoxicity and sustained drug release behavior. Colloid Surf A 449:96–113CrossRefGoogle Scholar
  24. 24.
    Liu B, Fu Z, Meng W, Chen M, Wu G, Zhang M (2018) New insights on in situ charge neutralization governing particle size distribution in macroemulsion polymerization. Colloid Surf A 540:242–250CrossRefGoogle Scholar
  25. 25.
    Zhenxing H, Xiaowei Y, Junliang L, Yuping Y, Ling W, Yanwei Z (2011) An investigation of the effect of sodium dodecyl sulfate on quasi-emulsifier-free emulsion polymerization for highly monodisperse polystyrene nanospheres. Eur Polym J 47:24–30CrossRefGoogle Scholar
  26. 26.
    Yeong SCMH, Choi KH, Sang OK, Yoon KK, In JC (2001) Synthesis of exfoliated PMMA/Na-MMT nanocomposites via soap-free emulsion polymerization. Macromolecules 34:8978–8985CrossRefGoogle Scholar
  27. 27.
    Zhang Q, Wang WJ, Lu Y, Li BG, Zhu S (2011) Reversibly coagulatable and redispersible polystyrene latex prepared by emulsion polymerization of styrene containing switchable amidine. Macromolecules 44:6539–6345CrossRefGoogle Scholar
  28. 28.
    Yamamoto T, Yokoyama T (2015) Effect of counter ionic radius in initiator on particle size in soap-free emulsion polymerization of styrene. Chem Lett 44:824–825CrossRefGoogle Scholar
  29. 29.
    Ruszkay KSWSJ (1998) Oxidation of aldehydes with oxone ® in aqueous acetone. Tetrahedron 54:401–410CrossRefGoogle Scholar
  30. 30.
    Camli ST, Buyukserin F, Balci O, Budak GG (2010) Size controlled synthesis of sub-100 nm monodisperse poly(methylmethacrylate) nanoparticles using surfactant-free emulsion polymerization. J Colloid Interface Sci 344:528–532PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    An Z, Tang W, Hawker CJ, Stucky GD (2006) One-step microwave preparation of well-defined and functionalized polymeric nanoparticles. J Am Chem Soc 128:15054–15055PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Park JG, Forster JD, Dufresne ER (2010) High-yield synthesis of monodisperse dumbbell-shaped polymer nanoparticles. J Am Chem Soc 132:5960–5961PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Kim JW, Suh KD (2008) Monodisperse polymer particles synthesized by seeded polymerization techniques. J Ind Eng Chem 14:1–9CrossRefGoogle Scholar
  34. 34.
    Okubo M, Yamada A, Shibao S, Nakamae K, Matsumoto T (1981) Studies on suspension and emulsion. XLVI Emulsifier-free emulsion polymerization of styrene in acetone–water. J Appl Polym Sci 26:1675–1679CrossRefGoogle Scholar
  35. 35.
    Kim G, Lim S, Lee BH, Shim SE, Choe S (2010) Effect of homogeneity of methanol/water/monomer mixture on the mode of polymerization of MMA: soap-free emulsion polymerization versus dispersion polymerization. Polymer 51:1197–1205CrossRefGoogle Scholar
  36. 36.
    Nunes JS, Asua JM (2013) Synthesis of high solids content low surfactant/polymer ratio nanolatexes. Langmuir 29:3895–3902CrossRefGoogle Scholar
  37. 37.
    Fowler CI, Jessop PG, Cunningham MF (2012) Aryl amidine and tertiary amine switchable surfactants and their application in the emulsion polymerization of methyl methacrylate. Macromolecules 45:2955–2962CrossRefGoogle Scholar
  38. 38.
    Singh V, Tripathi DN, Malviya T, Sanghi R (2009) Persulfate/ascorbic acid initiated synthesis of poly(acrylonitrile)-grafted tamarind seed gum: a potential commercial gum. J Appl Polym Sci 111:539–554CrossRefGoogle Scholar
  39. 39.
    Kohut SN, Pirri R, Asua JM, Leiza JR (2009) Redox initiator systems for emulsion polymerization of acrylates. J Polym Sci A 47:2917–2927CrossRefGoogle Scholar
  40. 40.
    Li Z, Cheng H, Han CC (2012) Mechanism of narrowly dispersed latex formation in a surfactant-free emulsion polymerization of styrene in acetone–water mixture. Macromolecules 45:3231–3239CrossRefGoogle Scholar
  41. 41.
    Tanrisever T, Okay O, Sönmezoğlu IÇ (1996) Kinetics of emulsifier–free emulsion polymerization of methyl methacrylate. J Appl Polym Sci 61:485–493CrossRefGoogle Scholar
  42. 42.
    Luna XJL, Guyot A, Bourgeat LE (2002) Synthesis and characterization of silica/poly (methyl methacrylate) nanocomposite latex particles through emulsion polymerization using a cationic azo initiator. J Colloid Interface Sci 250:82–92CrossRefGoogle Scholar
  43. 43.
    Fowler CI, Muchemu CM, Miller RE, Phan L, O’Neill C, Jessop PG (2011) Emulsion polymerization of styrene and methyl methacrylate using cationic switchable surfactants. Macromolecules 44:2501–2509CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.State Key Laboratory of Polymer Materials Engineering of China (Sichuan University)Polymer Research Institute of Sichuan UniversityChengduChina

Personalised recommendations