Luminescent lanthanide metallogels: situ fabrication, self-healing and rheological properties

  • Min XueEmail author
  • Ming Chen
  • Wenhao Chang
  • Ruiyang Chen
  • Pengna Li
Original Contribution


We have presented a simple method for situ fabrication of photoluminescent lanthanide metallogels. A series of lanthanide metallogels could be rapidly formed through mixing the aqueous solution of Tb3+ or Eu3+ and organic solution of synthesized aromatic carboxylic ligands (DCn, n = 14, 16,18) at room temperature. The gelation tests revealed that the ligand with longer alkyl chain (DC18) showed stronger gelling abilities, indicating that the structure of non-coordinated groups in ligand molecules could affect self-assembly processes and, hence, the microstructures and properties of lanthanide metallogels. FT-IR measurements demonstrated that the driving force of formation of the metallogels was the coordination interaction between DCn and Tb3+ or Eu3+. XRD analysis revealed that DC14 metallogels took a mixture of hexagonal and tetragonal packing modes. All obtained metallogels have shown typical luminescent emissions of the lanthanide complex. In particular, DC18/Tb(NO3)3 metallogel in DMF/H2O (v:v = 1:1) has shown excellent self-supporting, self-healing, film-forming, and rheological properties.

Graphical abstract

The Tb3+/Eu3+ metallogels have been formed with aromatic carboxylic acids as ligands, and they have shown excellent luminescent, self-healing, film-forming, and rheological properties.


Metallogel Aromatic carboxylic acids Self-assembly Thixotropic property Self-healing property 


Funding information

The authors gratefully acknowledge the financial support from the Natural Science Foundation of China (NSFC) (21403166, 21706209), the Natural Science Foundation of Shaanxi Province (2016JQ2005, 2017JQ2028), and the Science and Technology Program of Xi’an (2017CGWL01), College Students’ innovation and entrepreneurship training program (201711080004, S201911080057).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2020_4598_MOESM1_ESM.docx (4 mb)
ESM 1 (DOCX 4083 kb)


  1. 1.
    Whitesides GM, Grzybowski BA (2005) Self-assembly at all scales. Science 295(29):2418–2421Google Scholar
  2. 2.
    Jones CD, Steed JW (2016) Gels with sense: supramolecular materials that respond to heat, light and sound. Chem Soc Rev 45(23):6546–6596PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Kishimura A, Yamashita T, Aida T (2005) Phosphorescent organogels via “metallophilic” interactions for reversible RGB-color switching. J Am Chem Soc 127(1):179–183PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Dong S, Luo Y, Yan X, Zheng B, Ding X, Yu Y, Ma Z, Zhao Q, Huang F (2011) A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition. Angew Chem Int Ed Engl 50(8):1905–1909PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Rodriguez F, Miravet JF, Escuder B (2009) A supramolecular hydrogel as a reusable heterogeneous catalyst for the direct aldol reaction. Chem Commun 47:7303–7305CrossRefGoogle Scholar
  6. 6.
    Kawano SI, Tamaru SI, Fujita N, Shinkai S (2004) Sol-gel polycondensation of tetraethyl orthosilicate (TEOS) in sugar-based porphyrin organogels: inorganic conversion of a sugar-directed porphyrinic fiver library through sol-gel transcription processes. Chem Eur J 10(2):343–351PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Okesola BO, Smith DK (2016) Applying low-molecular weight supramolecular gelators in an environmental setting - self-assembled gels as smart materials for pollutant removal. Chem Soc Rev 45(15):4226–4251PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Xu ZY, Peng JX, Yan N, Yu H, Zhang SS, Liu KQ, Fang Y (2013) Simple design but marvelous performances: molecular gels of superior strength and self-healing properties. Soft Matter 9(4):1091–1099CrossRefGoogle Scholar
  9. 9.
    Piepenbrock MM, Lloyd GO, Clarke N, Steed JW (2010) Metal- and anion-binding supramolecular gels. Chem Rev 110(4):1960–2004PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Tam AYY, Yam VWW (2013) Recent advances in metallogels. Chem Soc Rev 42(4):1540–1567PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Zhang J, Su CY (2013) Metal-organic gels: from discrete metallogelators to coordination polymers. Coord Chem Rev 257(7–8):1373–1408CrossRefGoogle Scholar
  12. 12.
    Sutar P, Maji TK (2016) Coordination polymer gels: soft metal-organic supramolecular materials and versatile applications. Chem Commun 52(52):8055–8074CrossRefGoogle Scholar
  13. 13.
    Häring M, Díaz DD (2016) Supramolecular metallogels with bulk self-healing properties prepared by in situ metal complexation. Chem Commun 52(89):13068–13081CrossRefGoogle Scholar
  14. 14.
    Karak S, Kumar S, Bera S, Díaz Díaz D, Banerjee S, Vanka K, Banerjee R (2017) Interplaying anions in a supramolecular metallohydrogel to form metal organic framework. Chem Commun 53(26):3705–3708CrossRefGoogle Scholar
  15. 15.
    Ganta S, Chand DK (2018) Multi-stimuli-responsive metallogel molded from a Pd2L4-type coordination cage: selective removal of anionic dyes. Inorg Chem 57(7):3634–3645PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Xue M, Lü YC, Sun QQ, Liu KQ, Liu Z, Sun P (2015) Ag(I)-coordinated supramolecular metallogels based on Schiff base ligands: structural characterization and reversible thixotropic property. Cryst Growth Des 15(11):5360–5367CrossRefGoogle Scholar
  17. 17.
    Park J, Lee JH, Jawprski J, Shinkai S, Jung JH (2014) Luminescent calyx[4]arene-based metallogel formed at different solvent composition. Inorg Chem 53(14):7181–7187PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Karan CK, Sau MC, Bhattacharjee M (2017) A copper(II) metal-organic hydrogel as a multifunctional precatalyst for CuAAC reactions and chemical fixation of CO2 under solvent free conditions. Chem Commun 53(9):1526–1529CrossRefGoogle Scholar
  19. 19.
    Mitsumoto K, Cameron JM, Wei RJ, Nishikawa H, Shiga T, Nihei M, Newton GN, Oshio H (2017) A multi-redox responsive cyanometalate-based metallogel. Chem Eur J 23(7):1502–1506PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Lin Q, Lu TT, Zhu X, Sun B, Yang QP, Wei TB, Zhang YM (2015) A novel supramolecular metallogel-based high-resolution anion sensor array. Chem Commun 51(9):1635–1638CrossRefGoogle Scholar
  21. 21.
    Mallick A, Schön E, Panda T, Sreenivas K, Díaz D, Banerjee R (2012) Fine-tuning the balance between crystallization and gelation and enhancement of CO2 uptake on functionalized calcium based MOFs and metallogels. J Mater Chem 22(30):14951–14963CrossRefGoogle Scholar
  22. 22.
    Qin X, Liu XW, Huang W, Bettinelli M, Liu XG (2017) Lanthanide-activated phosphors based on 4f-5d optical transitions: theoretical and experimental aspects. Chem Rev 117(5):4488–4527PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Eliseeva SV, Bünzli JG (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39(1):189–227PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Feng J, Zhang HJ (2013) Hybrid materials based on lanthanide organic complexes: a review. Chem Soc Rev 42(1):387–410PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109(9):4283–4374PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    dos Santos CMG, Harte AJ, Quinn SJ, Gunnlaugsson T (2008) Recent developments in the field of supramolecular lanthanide luminescent sensors and self-assemblies. Coord Chem Rev 252(23–24):2512–2572CrossRefGoogle Scholar
  27. 27.
    Rajendran M, Yapici E, Miller LW (2014) Lanthanide-based imaging of protein interactions in live cells. Inorg Chem 53(4):1839–1853PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Shavaleev NM, Eliseeva SV, Scopelliti R, Bünzli JG (2015) Influence of symmetry on the luminescence and radiative lifetime of nine-coordinate europium complexes. Inorg Chem 54(18):9166–9173PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Kotova O, Daly R, dos Santosv CMG, Boese M, Kruger PE, Boland JJ, Gunnlaugsson T (2012) Europium-directed self-assembly of a luminescent supramolecular gel from a tripodal terpyridine-based ligand. Angew Chem Int Ed 51(1):1–6CrossRefGoogle Scholar
  30. 30.
    Martínez-Calvo M, Kotova O, Möbius ME, Bell AP, McCabe T, Boland JJ, Gunnlaugsson T (2015) Healable luminescent self-assembly supramolecular metallogels possessing lanthanide (Eu/Tb) dependent rheological and morphological properties. J Am Chem Soc 137(5):1983–1992PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Chen PK, Li QC, Grindy S, Holten-Andersen N (2015) White-light-emitting lanthanide metallogels with tunable luminescence and reversible stimuli-responsive properties. J Am Chem Soc 137(36):11590–11593PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Ma XX, Cui YQ, Liu SW, Wu JC (2017) A thermo-responsive supramolecular gel and its luminescence enhancement induced by rare earth Y3+. Soft Matter 13(44):8027–8030PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Pedireddi VR, Varughese S (2004) Solvent-dependent coordination polymers: cobalt complexes of 3,5-dinitrobenzoic acid and 3,5-dinitro-4-methylbenzoic acid with 4,4′-bipyrdine. Inorg Chem 43(2):450–457PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Carlucci L, Ciani G, Proserpio DM, Sironi A (1995) Novel networks of unusually coordinated silver (I) cations: the wafer-like structure of [Ag(pyz)2][Ag2(pyz)5](PF6)3•2G and the simple cubic frame of [Ag(pyz)3](SbF6). Angew Chem Int Ed Engl 34(17):1895–1898CrossRefGoogle Scholar
  35. 35.
    Ma XX, Yu DW, Tang N, Wu JC (2014) Tb3+-containing supramolecular hydrogels: luminescence properties and reversible sol-gel transitions induced by external stimuli. Dalton Trans 43(26):9856–9859PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Hu JS, Guo YG, Liang HP, Wan LJ, Jiang L (2005) Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms. J Am Chem Soc 127(48):17090–17095PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Kim HJ, Zin WC, Lee M (2004) Anion-directed self-assembly of coordination polymer into tunable secondary structure. J Am Chem Soc 126(22):7009–7014PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Qiao Y, Lin YY, Zhang SF, Huang JB (2011) Lanthanide-containing photoluminescent materials: from hybrid hydrogel to inorganic nanotubes. Chem Eur J 17(18):5180–5187PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Harada A, Takashima Y, Nakahata M (2014) Supramolecular polymeric materials via cyclodextrin-guest interactions. Acc Chem Res 47(7):2128–2140PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Brantley JN, Wiggins KM, Bielawski CW (2013) Squeezing new life out of polymers. Angew Chem Int Ed 52(14):3806–3808CrossRefGoogle Scholar
  41. 41.
    Kirilov P, Gauffre F, Franceschi-Messant S, Perez E, Rico-Lattes I (2009) Rheological characterization of a new type of colloidal dispersion based on nanoparticles of gelled oil. J Phys Chem B 113(32):11101–11108PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Yuan JC, Fang XL, Zhang LX, Hong GN, Lin YJ, Zheng QF, Xu YZ, Ruan YH, Weng WG, Xia HP, Chen GH (2012) Multi-responsive self-healing metallo-supramolecular gels based on “click” ligand. J Mater Chem 22(23):11515–11522CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Min Xue
    • 1
    Email author
  • Ming Chen
    • 1
  • Wenhao Chang
    • 1
  • Ruiyang Chen
    • 1
  • Pengna Li
    • 1
  1. 1.School of Chemical EngineeringXi’an UniversityXi’anPeople’s Republic of China

Personalised recommendations