Advertisement

Colloid and Polymer Science

, Volume 297, Issue 11–12, pp 1383–1401 | Cite as

Crosstalk between responsivities to various stimuli in multiresponsive polymers: change in polymer chain and external environment polarity as the key factor

  • Martin HrubyEmail author
  • Petr Štěpánek
  • Jiří Pánek
  • Christine M. Papadakis
Invited Review
  • 96 Downloads

Abstract

Multiresponsive polymers offer a wealth of possibilities to design switchable materials which respond to more than one stimulus. We describe first the response of polymers to a single external stimulus, namely to temperature, light, pH value, redox changes, and low molecular weight species, and discuss the influence of these stimuli on the polymer chain polarity. Then, we review multiresponsive homopolymers and statistical and block co-polymers. Finally, we discuss the similarity of multiresponsive synthetic polymers to biopolymers. As a conclusion, multiresponsiveness opens up a broad area for combining different properties in one system, enabling numerous possible applications.

Keywords

Polymer Stimulus-responsive polymers Solution behavior Thermoresponsiveness pH responsiveness Self-association 

Notes

Funding information

M.H. and P.S. received support from the Czech Science Foundation (grant nos. 19-01602S and 18-07983S, respectively). C.M.P. received support from the Deutsche Forschungsgemeinschaft (grant nos. Pa 771/14-1 and Pa 771/19-1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Carnevale V, Rohacs T (2016) TRPV1: a target for rational drug design. Pharmaceuticals:52(1–20).  https://doi.org/10.3390/ph9030052 CrossRefGoogle Scholar
  2. 2.
    Yang F, Zheng J (2017) Understand spiciness: mechanism of TRPV1 channel activation by capsaicin. Protein Cell 8:169–177.  https://doi.org/10.1007/s13238-016-0353-7 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Scherzinger C, Schwarz A, Bardow A, Leonhard K, Richtering W (2014) Cononsolvency of poly-N-isopropyl acrylamide (PNIPAM): microgels versus linear chains and macrogels. Curr Opin Colloid Interface Sci 19:84–94.  https://doi.org/10.1016/j.cocis.2014.03.011 CrossRefGoogle Scholar
  4. 4.
    Bertrand O, Vlad A, Hoogenboom R, Gohy JF (2016) Redox-controlled upper critical solution temperature behaviour of a nitroxide containing polymer in alcohol–water mixtures. Polym Chem 7:1088–1095.  https://doi.org/10.1039/c5py01864a CrossRefGoogle Scholar
  5. 5.
    Sapir L, Harries D (2016) Macromolecular compaction by mixed solutions: bridging versus depletion attraction. Curr Opin Colloid Interface Sci 22:80–87.  https://doi.org/10.1016/j.cocis.2016.02.010 CrossRefGoogle Scholar
  6. 6.
    Budkov YA, Kolesnikov AL (2018) Models of the conformational behavior of polymers in mixed solvents. Polym Sci C 60:148–159.  https://doi.org/10.1134/S1811238218020030 CrossRefGoogle Scholar
  7. 7.
    Kotsuchibashi Y, Ebara M, Aoyagi T, Narain R (2016) Recent advances in dual temperature responsive block copolymers and their potential as biomedical applications. Polymers 8:380(1–25).  https://doi.org/10.3390/polym8110380 CrossRefGoogle Scholar
  8. 8.
    Sanchez-Moreno P, de Vicente J, Nardecchia S, Marchal JA, Boulaiz H (2018) Thermo-sensitive nanomaterials: recent advance in synthesis and biomedical applications. Nanomaterials 8:935(1–32).  https://doi.org/10.3390/nano8110935 CrossRefGoogle Scholar
  9. 9.
    Vishnevetskaya NS, Hildebrand V, Dyakonova MA, Niebuur B-J, Kyriakos K, Raftopoulos KN, Di Z, Müller-Buschbaum P, Laschewsky A, Papadakis CM (2018) Dual orthogonal switching of the “schizophrenic” self-assembly of diblock copolymers. Macromolecules 51:2604–2614.  https://doi.org/10.1021/acs.macromol.8b00096 CrossRefGoogle Scholar
  10. 10.
    Loukotova L, Bogomolova A, Konefal R, Špírková M, Štěpánek P, Hrubý M (2019) Hybrid kappa-carrageenan-based polymers showing “schizophrenic” lower and upper critical solution temperatures and potassium responsiveness. Carbohydr Polym 210:26–37.  https://doi.org/10.1016/j.carbpol.2019.01.050 CrossRefPubMedGoogle Scholar
  11. 11.
    Pospisilova A, Filippov SK, Bogomolova A, Turner S, Sedlacek O, Matushkin N, Cernochova Z, Stepanek P, Hruby M (2014) Glycogen-graft-poly(2-alkyl-2-oxazolines)—the new versatile biopolymer-based thermoresponsive macromolecular toolbox. RSC Adv 4:61580–61588.  https://doi.org/10.1039/c4ra10315g CrossRefGoogle Scholar
  12. 12.
    Hruby M, Filippov SK, Stepanek P (2015) Smart polymers in drug delivery systems on crossroads: which way deserves following? Eur Polym J 65:82–97.  https://doi.org/10.1016/j.eurpolymj.2015.01.016 CrossRefGoogle Scholar
  13. 13.
    Sedlák M (2017) Poly(alkylacrylic acid)s: solution behavior and selfassembly. Colloid Polym Sci 295:1281–1292.  https://doi.org/10.1007/s00396-016-4003-7 CrossRefGoogle Scholar
  14. 14.
    Johnson EC, Murdoch TJ, Gresham IJ, Humphreys B, Prescott SW, Nelson A, Webber GB, Wanless EJ (2019) Temperature dependent specific ion effects in mixed salt environments on a thermoresponsive poly(oligoethylene glycol methacrylate) brush. Phys Chem Chem Phys 21:4650–4662.  https://doi.org/10.1039/c8cp06644b CrossRefPubMedGoogle Scholar
  15. 15.
    Zarrintaj P, Jouyandeh M, Ganjali MR, Hadavand BS, Mozafari M, Sheiko SS, Vatankhah-Varnoosfaderani M, Gutierrez TJ, Saeb MR (2019) Thermo-sensitive polymers in medicine: a review. Eur Polym J 117:402–423.  https://doi.org/10.1016/j.eurpolymj.2019.05.024 CrossRefGoogle Scholar
  16. 16.
    Hruby M, Kucka J, Lebeda O, Mackova H, Babic M, Konak C, Studenovsky M, Sikora A, Kozempel J, Ulbrich K (2007) New bioerodable thermoresponsive polymers for possible radiotherapeutic applications. J Control Release 119:25–33.  https://doi.org/10.1016/j.jconrel.2007.02.009 CrossRefPubMedGoogle Scholar
  17. 17.
    Sambe L, de La Rosa VR, Belal K, Stoffelbach F, Lyskawa J, Delattre F, Bria M, Cooke G, Hoogenboom R, Woisel P (2014) Programmable polymer-based supramolecular temperature sensor with a memory function. Angew Chem Int Ed 53:5044–5048.  https://doi.org/10.1002/anie.201402108 CrossRefGoogle Scholar
  18. 18.
    Osvath Z, Ivan B (2017) The dependence of the cloud point, clearing point, and hysteresis of poly(N-isopropylacrylamide) on experimental conditions: the need for standardization of thermoresponsive transition determinations. Macromol Chem Phys 218:1600470(1–13).  https://doi.org/10.1002/macp.201600470 CrossRefGoogle Scholar
  19. 19.
    Sun ST, Wu PY (2015) From globules to crystals: a spectral study of poly(2-isopropyl-2-oxazoline) crystallization in hot water. PCCP 17:32232–32240.  https://doi.org/10.1039/c5cp05626h CrossRefPubMedGoogle Scholar
  20. 20.
    Sedlak M, Konak C (2009) A new approach to polymer self-assembly into stable nanoparticles: poly(ethylacrylic acid) homopolymers. Macromolecules 42:7430–7438.  https://doi.org/10.1021/ma9015032 CrossRefGoogle Scholar
  21. 21.
    Sedlak M (2012) Homopolymer self-assembly into stable nanoparticles: concerted action of hydrophobic association and hydrogen bonding in thermoresponsive poly(alkylacrylic acid)s. J Phys Chem B 116:2356–2364.  https://doi.org/10.1021/jp208445pma9015032 CrossRefPubMedGoogle Scholar
  22. 22.
    Xue ZM, Yan CY, Zhao X, Yu D, Mu T (2019) How Hofmeister ions change the local environment around thermoresponsive polymers in aqueous solutions: an NMR study. Acta Phys -Chim Sin 35:49–57.  https://doi.org/10.3866/PKU.WHXB201802071 CrossRefGoogle Scholar
  23. 23.
    Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408.  https://doi.org/10.1021/bm200083n CrossRefPubMedGoogle Scholar
  24. 24.
    Seuring J, Bayer FM, Huber K, Agarwal S (2011) Upper critical solution temperature of poly(N-acryloyl glycinamide) in water: a concealed property. Macromolecules 45:374–384.  https://doi.org/10.1021/ma202059t CrossRefGoogle Scholar
  25. 25.
    Shimada N, Ino H, Maie K, Nakayama M, Kano A, Maruyama A (2011) Ureido-derivatized polymers based on both poly(allylurea) and poly(L-citrulline) exhibit UCST-type phase transition behavior under physiologically relevant conditions. Biomacromolecules 12:3418–3422.  https://doi.org/10.1021/bm2010752 CrossRefPubMedGoogle Scholar
  26. 26.
    Seuring J, Agarwal S (2012) First example of a universal and cost-effective approach: polymers with tunable upper critical solution temperature in water and electrolyte solution. Macromolecules 45:3910–3918.  https://doi.org/10.1021/ma300355k CrossRefGoogle Scholar
  27. 27.
    Asadujjaman A, Kent B, Bertin A (2017) Phase transition and aggregation behaviour of an UCST-type copolymer poly(acrylamide-co-acrylonitrile) in water: effect of acrylonitrile content, concentration in solution, copolymer chain length and presence of electrolyte. Soft Matter 13:658–669. DOI.  https://doi.org/10.1039/c6sm02262f CrossRefPubMedGoogle Scholar
  28. 28.
    Köberle P, Laschewsky A, Lomax TD (1991) Interactions of a zwitterionic polysoap and its cationic analog with inorganic salts. Makromol Chem Rapid Commun 12:427–433.  https://doi.org/10.1002/marc.1991.030120709 CrossRefGoogle Scholar
  29. 29.
    Laschewsky A (2014) Structures and synthesis of zwitterionic polymers. Polymers 6:1544–1601.  https://doi.org/10.3390/polym6051544 CrossRefGoogle Scholar
  30. 30.
    Hildebrand V, Laschewsky A, Zehm D (2014) On the hydrophilicity of polyzwitterion poly (N,N-dimethyl-N-(3-(methacrylamido)propyl)ammoniopropane sulfonate) in water, deuterated water, and aqueous salt solutions. J Biomater Sci Polym Ed 25:1602–1618.  https://doi.org/10.1080/09205063.2014.939918 CrossRefPubMedGoogle Scholar
  31. 31.
    Hildebrand V, Laschewsky A, Päch M, Müller-Buschbaum P, Papadakis CM (2017) Effect of the zwitterion structure on the thermo-responsive behaviour of poly(sulfobetaine methacrylates). Polym Chem 8:310–322.  https://doi.org/10.1039/c6py01220e CrossRefGoogle Scholar
  32. 32.
    Niebuur BJ, Puchmayr J, Herold C, Kreuzer LP, Hildebrand V, Müller-Buschbaum P, Laschewsky A, Papadakis CM (2018) Polysulfobetaines in aqueous solution and in thin film geometry. Materials 11, 850(1–11).  https://doi.org/10.3390/ma11050850 CrossRefGoogle Scholar
  33. 33.
    Higgins JS, Benoît HC (1994) Polymers and neutron scattering. Clarendon, OxfordGoogle Scholar
  34. 34.
    Wang XH, Wu C (1999) Light-scattering study of coil-to-globule transition of a poly(N-isopropylacrylamide) chain in deuterated water. Macromolecules 32:4299–4301.  https://doi.org/10.1021/ma9902450 CrossRefGoogle Scholar
  35. 35.
    Sun J, Peng YF, Chen Y, Liu Y, Deng JJ, Lu LC, Cai YL (2010) Effect of molecular structure on thermoresponsive behaviors of pyrrolidone-based water-soluble polymers. Macromolecules 43:4041–4049.  https://doi.org/10.1021/ma100133q CrossRefGoogle Scholar
  36. 36.
    Luo C, Fu W, Li Z, Zhao B (2016) Multi-responsive polymethacrylamide homopolymers derived from tertiary amine-modified L-alanine. Polymer 101:319–327.  https://doi.org/10.1016/j.polymer.2016.08.091 CrossRefGoogle Scholar
  37. 37.
    Kreuzer LP, Widmann T, Hohn N, Wang K, Bießmann L, Peis L, Moulin J-F, Hildebrand V, Laschewsky A, Papadakis CM, Müller-Buschbaum P (2019) Swelling and exchange behavior of poly(sulfobetaine)-based block copolymer thin films. Macromolecules, ASAP.  https://doi.org/10.1021/acs.macromol.9b00443 CrossRefGoogle Scholar
  38. 38.
    Bucur CB, Sui Z, Schlenoff JB (2006) Ideal mixing in polyelectrolyte complexes and multilayers: entropy driven assembly. J Am Chem Soc 128:13690–13691.  https://doi.org/10.1021/ja064532c CrossRefPubMedGoogle Scholar
  39. 39.
    Fu JC, Schlenoff JB (2016) Driving forces for oppositely charged polyion association in aqueous solutions: enthalpic, entropic, but not electrostatic. J Am Chem Soc 138:980–990.  https://doi.org/10.1021/jacs.5b11878 CrossRefPubMedGoogle Scholar
  40. 40.
    Versluis F, Marsden HR, Kros A (2010) Power struggles in peptide-amphiphile nanostructures. Chem Soc Rev 39:3434–3444.  https://doi.org/10.1039/b919446k CrossRefPubMedGoogle Scholar
  41. 41.
    Ohshima H (2015) Electrostatic interaction of soft particles. Adv Colloid Interface Sci 226:2–16.  https://doi.org/10.1016/j.cis.2015.05.001 CrossRefPubMedGoogle Scholar
  42. 42.
    Ruhe J, Ballauff M, Biesalski M, Dziezok P, Grohn F, Johannsmann D, Houbenov N, Hugenberg N, Konradi R, Minko S, Motornov M, Netz RR, Schmidt M, Seidel C, Stamm M, Stephan T, Usov D, Zhang H (2004) Polyelectrolyte brushes. In: Schimdt M (ed) Polyelectrolytes with defined molecular architecture I Book series: Advances in polymer science, vol 165, pp 79–150.  https://doi.org/10.1007/b11268 CrossRefGoogle Scholar
  43. 43.
    Kudaibergenov SE, Nuraje N (2018) Intra- and Interpolyelectrolyte complexes of polyampholytes. Polymers 10, Article No. 1146.  https://doi.org/10.3390/polym10101146 CrossRefGoogle Scholar
  44. 44.
    Meka VS, Singe MKG, Pichika MR, Nali SR, Kolapaili VRM, Kesharwani P (2017) A comprehensive review on polyelectrolyte complexes. Drug Discov Today 22:1697–1706.  https://doi.org/10.1016/j.drudis.2017.06.008 CrossRefPubMedGoogle Scholar
  45. 45.
    Filippov SK, Starovoytova L, Konak C, Hruby M, Mackova H, Karlsson G, Stepanek P (2010) pH sensitive polymer nanoparticles: effect of hydrophobicity on self-assembly. Langmuir 26:14450–14457.  https://doi.org/10.1021/la1018778 CrossRefPubMedGoogle Scholar
  46. 46.
    Riabtseva A, Kaberov LI, Kucka J, Bogomolova A, Stepanek P, Filippov SK, Hruby M (2017) Polyelectrolyte pH-responsive protein-containing nanoparticles: the physicochemical supramolecular approach. Langmuir 33:764–772.  https://doi.org/10.1021/acs.langmuir.6b03778 CrossRefPubMedGoogle Scholar
  47. 47.
    Abbasi S, Yousefi G, Tamaddon A-M (2018) Polyacrylamide-b-copolypeptide hybrid copolymer as pH-responsive carrier for delivery of paclitaxel: effects of copolymer composition on nanomicelles properties, loading efficiency and hemocompatibility. Colloid Surf A 537:217–226.  https://doi.org/10.1016/j.colsurfa.2017.09.007 CrossRefGoogle Scholar
  48. 48.
    Jäger A, Jäger E, Surman F, Höcherl A, Angelov B, Ulrich K, Drechsler M, Garamus VM, Rodriguez-Emmenegger C, Nallet F, Stepanek P (2015) Nanoparticles of the poly([N-(2-hydroxypropyl)]-methacrylamide)-b-poly[2-(diisopropylamino)ethyl methacrylate] diblock copolymer for pH-triggered release of paclitaxel. Polym Chem 6:4946–4954.  https://doi.org/10.1039/c5py00567a CrossRefGoogle Scholar
  49. 49.
    Swift T, Seaton CC, Rimmer S (2017) Poly(acrylic acid) interpolymer complexes. Soft Matter 13:8736–8744.  https://doi.org/10.1039/c7sm01787a CrossRefPubMedGoogle Scholar
  50. 50.
    Stejskal J, Sapurina I, Trchova M (2010) Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog Polym Sci 35:1420–1481.  https://doi.org/10.1016/j.progpolymsci.2010.07.006 CrossRefGoogle Scholar
  51. 51.
    Song Y, Lv HL, Hu SW, Yang CY, Zhu XF (2013) Electroactivity of polyaniline in high pH solutions. Acta Chim Sin 71:999–1006.  https://doi.org/10.6023/A13020169 CrossRefGoogle Scholar
  52. 52.
    Tang XD, Liang XC, Gao LC, Fan XH, Zhou QF (2010) Water-soluble triply-responsive homopolymers of N,N-dimethylaminoethyl methacrylate with a terminal azobenzene moiety. J Polym Sci A Part A Polym Chem 48:2564–2570.  https://doi.org/10.1002/pola.24034 CrossRefGoogle Scholar
  53. 53.
    Zhao L, Zhang L, Zheng ZL, Ling Y, Tang HY (2019) Synthesis and properties of UCST-type thermo- and light-responsive homopolypeptides with azobenzene spacers and imidazolium pendants. Macromol Chem Phys 220, Article No. 1900061.  https://doi.org/10.1002/macp.201900061 CrossRefGoogle Scholar
  54. 54.
    Zhang L, Zhao L, Ling Y, Tang HY (2019) Unusual light-tunable thermoresponsive behavior of OEGylated homopolypeptide with azobenzene and thioether spacers. Eur Polym J 111:38–42.  https://doi.org/10.1016/j.eurpolymj.2018.12.013 CrossRefGoogle Scholar
  55. 55.
    Imamoto Y, Shichida Y (2014) Cone visual pigments. Biochim Biophys Acta Bioenerg 1837:664–673.  https://doi.org/10.1016/j.bbabio.2013.08.009 CrossRefGoogle Scholar
  56. 56.
    Wagner N, Theato P (2014) Light-induced wettability changes on polymer surfaces. Polymer 55:3436–3453.  https://doi.org/10.1016/j.polymer.2014.05.033 CrossRefGoogle Scholar
  57. 57.
    Klajn R (2014) Spiropyran-based dynamic materials. Chem Soc Rev 43:148–184.  https://doi.org/10.1039/c3cs60181a CrossRefPubMedGoogle Scholar
  58. 58.
    Sun JJ, Birnbaum W, Anderski J, Picker M-T, Mulac D, Langer K, Kuckling D (2018) Use of light-degradable aliphatic polycarbonate nanoparticles as drug carrier for photosensitizer. Biomacromolecules 19:4677–4690.  https://doi.org/10.1021/acs.biomac.8b01446 CrossRefPubMedGoogle Scholar
  59. 59.
    Wei W, Liu JC, Hu L, Qidau M, Xiaoya L (2014) Development and application of microelectronic photoresist. Prog Chem 26:1867–1888.  https://doi.org/10.7536/PC140729 CrossRefGoogle Scholar
  60. 60.
    Genolet G, Lorenz H (2014) UV-LIGA: from development to commercialization. Micromachines 5:486–495.  https://doi.org/10.3390/mi5030486 CrossRefGoogle Scholar
  61. 61.
    Liu M-N, Wang L, Yu Y-H, Li A-W (2017) Biomimetic construction of hierarchical structures via laser processing. Opt Mater Express 7:2208–2217.  https://doi.org/10.1364/OME.7.002208 CrossRefGoogle Scholar
  62. 62.
    Liu YY, Meng XF, Bu WB (2019) Upconversion-based photodynamic cancer therapy. Coord Chem Rev 379:82–98.  https://doi.org/10.1016/j.ccr.2017.09.006 CrossRefGoogle Scholar
  63. 63.
    Liu SW, Wang L, Lin M, Kiu Y, Zhang L-N, Zhang H (2019) Tumor photothermal therapy employing photothermal inorganic nanoparticles/polymers nanocomposites. Chin J Polym Sci 37:115–128.  https://doi.org/10.1007/s10118-019-2193-4 CrossRefGoogle Scholar
  64. 64.
    Borg RE, Rochford J (2018) Molecular photoacoustic contrast agents: design principles & applications. Photochem Photobiol 94:1175–1209.  https://doi.org/10.1111/php.12967 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Tao WH, He ZG (2018) ROS-responsive drug delivery systems for biomedical applications. Asian J Pharm Sci 13:101–112.  https://doi.org/10.1016/j.ajps.2017.11.002 CrossRefGoogle Scholar
  66. 66.
    Kuramoto N, Shishido Y, Nagai K (1997) Thermosensitive and redox-active polymers: preparation and properties of poly(N-ethylacrylamide-co-vinylferrocene) and poly(N,N-diethylacrylamide-co-vinylferrocene). J Polym Sci, Part A Polym Chem 35:1967–1972.  https://doi.org/10.1002/(SICI)1099-0518(19970730)35:10<1967::AID-POLA12>3.0.CO;2-F CrossRefGoogle Scholar
  67. 67.
    Zhang P, Wu JL, Xiao FM, Zhao DJ, Luan YX (2018) Disulfide bond based polymeric drug carriers for cancer chemotherapy and relevant redox environments in mammals. Med Res Rev 38:1485–1510.  https://doi.org/10.1002/med.21485 CrossRefPubMedGoogle Scholar
  68. 68.
    Gao YF, Dong C-M (2018) Triple redox/temperature responsive diselenide-containing homopolypeptide micelles and supramolecular hydrogels thereof. J Polym Sci Part A Polym Chem 56:1067–1077.  https://doi.org/10.1002/pola.28984 CrossRefGoogle Scholar
  69. 69.
    Eom T, Yoo W, Kim S, Khan A (2018) Biologically activatable azobenzene polymers targeted at drug delivery and imaging applications. Biomaterials 185:333–347.  https://doi.org/10.1016/j.biomaterials.2018.09.020 CrossRefPubMedGoogle Scholar
  70. 70.
    Höcherl A, Jäger E, Jäger A, Hruby M, Konefal R, Janouskova O, Spevacek J, Jian Y, Schmidt PW, Lodge TP, Stepanek P (2017) One-pot synthesis of reactive oxygen species (ROS)-self-immolative polyoxalate prodrug nanoparticles for hormone dependent cancer therapy with minimized side effects. Polym Chem 8:1999–2004.  https://doi.org/10.1039/c7py00270j CrossRefGoogle Scholar
  71. 71.
    Jäger E, Höcherl A, Janouskova O, Jäger A, Hruby M, Konefal R, Netopilik M, Panek J, Slouf M, Ulbrich K, Stepanek P (2016) Fluorescent boronate-based polymer nanoparticles with reactive oxygen species (ROS)-triggered cargo release for drug-delivery applications. Nanoscale 8:6958–6963.  https://doi.org/10.1039/c6nr00791k CrossRefPubMedGoogle Scholar
  72. 72.
    Zhou HW, Chen MS, Kiu YL, Wu S (2018) Stimuli-responsive ruthenium-containing polymers. Macromol Rapid Commun 39:1800372(1–13).  https://doi.org/10.1002/marc.201800372(1-13)
  73. 73.
    Tang XD, Zhang Q, Pei MS (2017) Temperature-/CO2-dual-responsiveness of a zwitterionic “schizophrenic” copolymer. RSC Adv 7:1567–1571.  https://doi.org/10.1039/c6ra28018h CrossRefGoogle Scholar
  74. 74.
    Hu JM, Whittaker MR, Yu SH, Quinn JF, Davis TP (2016) Nitric oxide (NO) endows arylamine-containing block copolymers with unique photoresponsive and switchable LCST properties. Macromolecules 49:2741–2749.  https://doi.org/10.1021/acs.macromol.6b00054 CrossRefGoogle Scholar
  75. 75.
    Hu JM, Whittaker MR, Yu SH, Quinn JF, Davis TP (2015) Nitric oxide (NO) cleavable biomimetic thermoresponsive double hydrophilic diblock copolymer with tunable LCST. Macromolecules 48:3817–3824.  https://doi.org/10.1021/acs.macromol.5b00996 CrossRefGoogle Scholar
  76. 76.
    Sun K, Liu XL, Wang YY, Wu ZQ (2013) A polymer-based turn-on fluorescent sensor for specific detection of hydrogen sulfide. RSC Adv 3:4543–14548.  https://doi.org/10.1039/c3ra41019f CrossRefGoogle Scholar
  77. 77.
    Skodova M, Hruby M, Filippov SK, Karlsson G, Mackova H, Spirkova M, Kankova D, Steinhart M, Stepanek P, Ulbrich K (2011) Novel polymeric nanoparticles assembled by metal ion addition. Macromol Chem Phys 212:2339–2348.  https://doi.org/10.1002/macp.201100431 CrossRefGoogle Scholar
  78. 78.
    Škodová M, Černoch P, Štěpánek P, Chánova E, Kučka J, Kálalová Z, Kaňková D, Hrubý M (2012) Self-assembled polymeric chelate nanoparticles as potential theranostic agents. Chem Phys Chem 13:4244–4250.  https://doi.org/10.1002/cphc.201200681 CrossRefPubMedGoogle Scholar
  79. 79.
    Vancoillie G, Hoogenboom R (2016) Synthesis and polymerization of boronic acid containing monomers. Polym Chem 7:5484–5495.  https://doi.org/10.1039/c6py00775a CrossRefGoogle Scholar
  80. 80.
    Arotçarena MB, Heise B, Ishaya S, Laschewsky A (2002) Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity. J Am Chem Soc 124:3787–3793.  https://doi.org/10.1021/ja012167d CrossRefPubMedGoogle Scholar
  81. 81.
    Pietsch C, Mansfeld U, Guerrero-Sanchez C, Hoeppener S, Vollrath A, Wagner M, Hoogenboom R, Saubern S, Thang SH, Becer CR, Chiefari J, Schubert US (2012) Thermo-induced self-assembly of responsive poly(DMAEMA-b-DEGMA) block copolymers into multi- and unilamellar vesicles. Macromolecules 45:9292–9302.  https://doi.org/10.1021/ma301867h CrossRefGoogle Scholar
  82. 82.
    Bütün V, Armes SP, Billingham NC (2001) Synthesis and aqueous properties of near monodisperse tertiary amine methacrylate homopolymers and diblock copolymers. Polymer 42:5993–6008.  https://doi.org/10.1016/S0032-3861(01)00066-0 CrossRefGoogle Scholar
  83. 83.
    Plamper FA, Ruppe M, Schmalz A, Borisov O, Ballauff MA, Müller AHE (2007) Tuning the thermoresponsive properties of weak polyelectrolytes: aqueous solutions of star-shaped and linear poly(N,N-dimethylaminoethyl methacrylate). Macromolecules 40:8361–8366.  https://doi.org/10.1021/ma071203b CrossRefGoogle Scholar
  84. 84.
    Han DH, Tong X, Boissière O, Zhao Y (2012) General strategy for making CO2-switchable polymers. ACS Macro Lett 1:57–61.  https://doi.org/10.1021/mz2000175 CrossRefGoogle Scholar
  85. 85.
    Karjalainen E, Aseyev V, Tenhu H (2014) Influence of hydrophobic anion on solution properties of PDMAEMA. Macromolecules 47:2103–2111.  https://doi.org/10.1021/ma5000706 CrossRefGoogle Scholar
  86. 86.
    Dong Z, Wei H, Mao J, Wang D, Yang M, Bo S, Ji X (2012) Synthesis and responsive behavior of poly(N,N-dimethylaminoethyl methacrylate) brushes grafted on silica nanoparticles and their quaternized derivatives. Polymer 53:2074–2084.  https://doi.org/10.1016/j.polymer.2012.03.011 CrossRefGoogle Scholar
  87. 87.
    Emileh A, Vasheghani-Farahani E, Imani M (2007) Swelling behavior, mechanical properties and network parameters of pH- and temperature-sensitive hydrogels of poly((2-dimethyl amino) ethyl methacrylate-co-butyl methacrylate). Eur Polym J 43:1986–1995.  https://doi.org/10.1016/j.eurpolymj.2007.02.002 CrossRefGoogle Scholar
  88. 88.
    An X, Tang Q, Zhu W, Zhang K, Zhao Y (2016) Synthesis, thermal properties, and thermoresponsive behaviors of cyclic poly(2-(dimethylamino)ethyl methacrylate)s. Macromol Rapid Commun 37:980–986.  https://doi.org/10.1002/marc.201600152 CrossRefPubMedGoogle Scholar
  89. 89.
    Zhang QL, Tosi F, Ügdüler S, Maji S, Hoogenboom R (2015) Tuning the LCST and UCST thermoresponsive behavior of poly(N,N-dimethylaminoethyl methacrylate) by electrostatic interactions with trivalent metal hexacyano anions and copolymerization. Macromol Rapid Commun 36:633–639.  https://doi.org/10.1002/marc.201400550 CrossRefPubMedGoogle Scholar
  90. 90.
    Seuring J, Agarwal S (2012) Polymers with upper critical solution temperature in aqueous solution. Macromol Rapid Commun 33:1898–1920.  https://doi.org/10.1002/marc.201200433 CrossRefPubMedGoogle Scholar
  91. 91.
    Jiang X, Feng C, Lu G, Huang X (2014) Thermoresponsive homopolymer tunable by pH and CO2. ACS Macro Lett 3:1121–1125.  https://doi.org/10.1021/mz5005822 CrossRefGoogle Scholar
  92. 92.
    Gan LH, Gan YY, Deen GR (2000) Poly(N-acryloyl-N′-propylpiperazine): a new stimuli-responsive polymer. Macromolecules 33:7893–7897.  https://doi.org/10.1021/ma000928b CrossRefGoogle Scholar
  93. 93.
    Shoji K, Nakayama M, Koseki T, Nakabayashi K, Mori H (2016) Threonine-based chiral homopolymers with multi-stimuli-responsive property by RAFT polymerization. Polymer 97:20–30.  https://doi.org/10.1016/j.polymer.2016.05.003 CrossRefGoogle Scholar
  94. 94.
    Bogomolova A, Kaberov L, Sedlacek O, Filippov SK, Stepanek P, Král V, Wang XY, Liu SL, Ye XD, Hruby M (2016) Double stimuli-responsive polymer systems: how to use crosstalk between pH- and thermosensitivity for drug depots. Eur Polym J 84:54–64.  https://doi.org/10.1016/j.eurpolymj.2016.09.010 CrossRefGoogle Scholar
  95. 95.
    Sedlacek O, Jirak D, Galisova A, Jager E, Laaser JE, Lodge TP, Stepanek P, Hruby M (2018) 19F Magnetic resonance imaging of injectable polymeric implants with multiresponsive behavior. Chem Mater 30:4892–4896.  https://doi.org/10.1021/acs.chemmater.8b02115 CrossRefGoogle Scholar
  96. 96.
    Yamamoto S, Pietrasik J, Matyjaszewski K (2008) Temperature- and pH-responsive dense copolymer brushes prepared by ATRP. Macromolecules 41:7013–7020.  https://doi.org/10.1021/ma8011366 CrossRefGoogle Scholar
  97. 97.
    Zhang H, Guo SW, Fan WZ, Zhao Y (2016) Ultrasensitive pH-induced water solubility switch using UCST polymers. Macromolecules 49:1424–1433.  https://doi.org/10.1021/acs.macromol.5b02522 CrossRefGoogle Scholar
  98. 98.
    Meiswinkel G, Ritter H (2013) A new type of thermoresponsive copolymer with UCST-type transitions in water: poly(N-vinylimidazole-co-1-vinyl-2-(hydroxymethyl)imidazole). Macromol Rapid Commun 34:1026–1031.  https://doi.org/10.1002/marc.201300213 CrossRefPubMedGoogle Scholar
  99. 99.
    Jochum FD, Theato P (2009) Temperature and light sensitive copolymers containing azobenzene moieties prepared via a polymer analogous reaction. Polymer 50:3079–3085.  https://doi.org/10.1016/j.polymer.2009.05.041 CrossRefGoogle Scholar
  100. 100.
    Zhang QL, Schattling P, Theato P, Hoogenboom R (2015) UV-tunable upper critical solution temperature behavior of azobenzene containing poly(methyl methacrylate) in aqueous ethanol. Eur Polym J 62:435–441.  https://doi.org/10.1016/j.eurpolymj.2014.06.029 CrossRefGoogle Scholar
  101. 101.
    ter Huurne TM, Voets IK, Palmans ARA, Meijer EW (2018) Effect of intra- versus intermolecular cross-linking on the supramolecular folding of a polymer chain. Macromolecules 51:8853–8861 https://pubs.acs.org/doi/10.1021/acs.macromol.8b01623 CrossRefGoogle Scholar
  102. 102.
    Heiler C, Offenloch JT, Blasco E, Barner-Kowollik C (2017) Photochemically induced folding of single chain polymer nanoparticles in water. ACS Macro Lett 6:56–61 https://pubs.acs.org/doi/abs/10.1021/acsmacrolett.6b00858 CrossRefGoogle Scholar
  103. 103.
    Li ST, Huo F, Li QL, Gao CQ, Su Y, Zhang WQ (2014) Synthesis of a doubly thermo-responsive schizophrenic diblock copolymer based on poly[N-(4-vinylbenzyl)-N,N-diethylamine] and its temperature-sensitive flip-flop micellization. Polym Chem 5:3910–3918.  https://doi.org/10.1039/c4py00077c CrossRefGoogle Scholar
  104. 104.
    Nguyen HH, El Ezzi M, Mingotaud C, Destarac M, Marty J-D, Lauth-de Viguerie N (2016) Doubly thermo-responsive copolymers in ionic liquid. Soft Matter 12:3246–3251.  https://doi.org/10.1039/c5sm03063c CrossRefPubMedGoogle Scholar
  105. 105.
    Li QL, Li L, Tian Q, Xu JX, Liu JP (2017) Doubly thermo-responsive polymers and their two-step phase transition behavior: a review. Nanosci Nanotechnol Lett 9:89–99.  https://doi.org/10.1166/nnl.2017.2266 CrossRefGoogle Scholar
  106. 106.
    Vishnevetskaya NS, Hildebrand V, Niebuur BJ, Grillo I, Filippov SK, Laschewsky A, Müller-Buschbaum P, Papadakis CM (2017) “Schizophrenic” micelles from doubly thermoresponsive polysulfobetaine-b-poly(N-isopropylmethacrylamide) diblock copolymers. Macromolecules 50:3985–3999.  https://doi.org/10.1021/acs.macromol.7b00356 CrossRefGoogle Scholar
  107. 107.
    Liu X, Ni PH, He JL, Zhang MZ (2010) Synthesis and micellization of pH/temperature-responsive double-hydrophilic diblock copolymers polyphosphoester-block-poly[2-(dimethylamino)ethyl methacrylate] prepared via ROP and ATRP. Macromolecules 43:4771–4781.  https://doi.org/10.1021/ma902658n CrossRefGoogle Scholar
  108. 108.
    Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113.  https://doi.org/10.1038/NMAT2614 CrossRefPubMedGoogle Scholar
  109. 109.
    Petrova S, Venturini CG, Jäger A, Jäger E, Černoch P, Kereiche S, Kováčik L, Raška I, Štěpánek P (2015) Novel thermo-responsive double-hydrophilic and hydrophobic MPEO-b-PEtOx-b-PCL triblock terpolymers: synthesis, characterization and self-assembly studies. Polymer 59:215–225.  https://doi.org/10.1016/j.polymer.2015.01.009 CrossRefGoogle Scholar
  110. 110.
    Schmidt BVKJ (2018) Double hydrophilic block copolymer self-assembly in aqueous solution. Macromol Chem Phys 219:1700494(1–15).  https://doi.org/10.1002/macp.201700494 CrossRefGoogle Scholar
  111. 111.
    Wu CL, Ying AG, Ren SB, Xu JK (2013) Synthesis and micellization of thermo/pH-responsive block copolymer poly(2-(diethylamino)ethylmethacrylate)-block-poly(N-isopropylacrylamide) prepared via RAFT polymerization. Asian J Chem 25:3806–3810.  https://doi.org/10.14233/ajchem.2013.13792 CrossRefGoogle Scholar
  112. 112.
    Yasuhiko IY, Chookaet WC, Kazunari AK (2007) Novel thermoresponsive polymers having biodegradable phosphoester backbones. Macromolecules 40:8136–8138.  https://doi.org/10.1021/ma0715573 CrossRefGoogle Scholar
  113. 113.
    Schilli CM, Zhang MF, Rizzardo E, Thang SH, Chong YK, Edwards K, Karlsson G, Müller AHE (2004) A new double-responsive block copolymer synthesized via RAFT polymerization: poly(N-isopropylacrylamide)-block-poly(acrylic acid). Macromolecules 37:7861–7866.  https://doi.org/10.1021/ma035838w CrossRefGoogle Scholar
  114. 114.
    Song LC, Sun H, Chen XL, Han X, Liu HL (2015) From multi-responsive tri- and diblock copolymers to diblock-copolymer-decorated gold nanoparticles: the effect of architecture on micellization behaviors in aqueous solutions. Soft Matter 11:4830–4839.  https://doi.org/10.1039/c5sm00859j CrossRefPubMedGoogle Scholar
  115. 115.
    Li GY, Shi LQ, An YL, Zhang WQ, Ma RJ (2006) Double-responsive core–shell–corona micelles from self-assembly of diblock copolymer of poly(t-butyl acrylate-co-acrylic acid)-b-poly(N-isopropylacrylamide). Polymer 47:4581–4587.  https://doi.org/10.1016/j.polymer.2006.04.041 CrossRefGoogle Scholar
  116. 116.
    Vishnevetskaya NS, Hildebrand V, Nizardo NN, Ko C-H, Di Z, Radulescu A, Barnsley LC, Müller-Buschbaum P, Laschewsky A, Papadakis CM (2019) All-in-one “schizophrenic” self-assembly of orthogonally tuned thermoresponsive diblock copolymers. Langmuir ASAP.  https://doi.org/10.1021/acs.langmuir.9b00241 CrossRefGoogle Scholar
  117. 117.
    Jin QA, Liu GY, Ji JA (2010) Micelles and reverse micelles with a photo and thermo double-responsive block copolymer. J Polym Sci Part A: Polym Chem 48:2855–2861.  https://doi.org/10.1002/pola.24062 CrossRefGoogle Scholar
  118. 118.
    Zhang Y, Chen SL, Pang ML, Zhang WQ (2016) Synthesis and micellization of multi-stimuli responsive block copolymer based on spiropyran. Polym Chem 7:6880–6884.  https://doi.org/10.1039/c6py01599a CrossRefGoogle Scholar
  119. 119.
    Su M, Shi SY, Wang Q, Liu N, Yin J, Liu CH, Ding YS, Wu ZQ (2015) Multi-responsive behavior of highly water-soluble poly(3-hexylthiophene)-block-poly(phenyl isocyanide) block copolymers. Polym Chem 6:6519–6528.  https://doi.org/10.1039/c5py00988j CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic
  2. 2.Soft Matter Physics Group, Department of PhysicsTechnical University of MunichGarchingGermany

Personalised recommendations