The features of poly (vinylimidazole) adsorption on gold surface: a molecular dynamics study

  • Ashot V. Meltonyan
  • Armen H. PoghosyanEmail author
  • Serzhik H. Sargsyan
  • Karine S. Margaryan
  • Aram A. Shahinyan
Original Contribution


The simulation of poly (vinylimidazole) (PVI) on Au {111} facet has been carried out to study the adsorption of polymer on gold surface. The molecular dynamics (MD) method has been utilized to get detailed information about the orientation of polymer on metal surface. Our results show that the polymer binds to gold surface via pyridinic nitrogen, and we found that the adsorbed nitrogen-gold distance is around 0.23 nm, which is in good agreement with existing data. The chemisorbed vinylimidazole molecules are mostly oriented perpendicular to gold surface, although the flat and slightly tilted configurational modes are also available. We obtained the adsorption energy value of ~ 59.8 kJ/mol−1, which fitted well with other existing data.


Poly (vinylimidazole) Gold surface Surface adsorption Molecular dynamics simulation 



The research has been funded by the Science Committee (MESA RA) project. We also acknowledge computational resource provided at the Institute for Informatics and Automation Problems of NAS RA, Armenia.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Eisenriegler E (1993) Polymers near surfaces: conformation properties and relation to critical phenomena. World Scientific Pub Co Inc, Hackensack, p 424CrossRefGoogle Scholar
  2. 2.
    Kasi D, Nily D, Tannenbaum R (2007) Competitive adsorption of polymers on metal nanoparticles. Surf Sci 601:1781–1788CrossRefGoogle Scholar
  3. 3.
    Aliofphazraei M (2014) Developments in corrosion protection. IntechOpen, LondonCrossRefGoogle Scholar
  4. 4.
    Carter DA, Pemberton JE (1992) Surface-enhanced Raman scattering of acid-base forms of imidazole on Ag. Langmuir 8:1218–1225CrossRefGoogle Scholar
  5. 5.
    Kuznetsov YI, Kazansky LP (2008) Physicochemical aspects of metal protection by azoles as corrosion inhibitors. Russ Chem Rev 77:219–232CrossRefGoogle Scholar
  6. 6.
    Antonijevic MM, Petrovic MB (2008) Copper corrosion inhibitors. A review. Int J Electrochem Sci 3:1–28Google Scholar
  7. 7.
    Kovacevic N, Kokalj A (2012) Chemistry of the interaction between azole type corrosion inhibitor molecules and metal surfaces. Mater Chem Phys 137:331–339CrossRefGoogle Scholar
  8. 8.
    Silva EF, Bandeira MCE, Alves WA, Mattos OR (2018) Surface-enhanced Raman scattering and electrochemical investigations on the adsorption of imidazole: imidazolium couple and its implications on copper corrosion inhibition. J Electrochem Soc 165:C375–C384CrossRefGoogle Scholar
  9. 9.
    Kovacevic N, Kokalj A (2011) DFT study of interaction of azoles with Cu(111) and Al(111) surfaces: role of azole nitrogen atoms and dipole-dipole interactions. J Phys Chem C 115:24189–24197CrossRefGoogle Scholar
  10. 10.
    Izzaouihda S, Mahjoubi K, Abou El Makarim H, Komiha N, Benoit DM (2016) Adsorption of imidazole on Au(111) surface: dispersion corrected density functional study. Appl Surf Sci 383:233–239CrossRefGoogle Scholar
  11. 11.
    Förster S, Kohl E, Ivanov M, Gross J, Widdra W, Janke W (2014) Polymer adsorption on reconstructed Au(001): a statistical description of P3HT by scanning tunneling microscopy and coarse-grained Monte Carlo simulations. J Chem Phys 141:164701–1641-8CrossRefGoogle Scholar
  12. 12.
    Poghosyan AH, Shahinyan AA, Koetz J (2018) Catanionic AOT/BDAC micelles on gold {111} surfaces. Colloid Polym Sci 296:1301–1306CrossRefGoogle Scholar
  13. 13.
    Narasinhan B, Sharma D, Kumar P (2011) Biological importance of imidazole neuclons in the new millennium. Med Chem Res 20:1119–1140CrossRefGoogle Scholar
  14. 14.
    Sun S, Geng Y, Tian L, Chen S, Yan Y, Hu S (2012) Density functional theory study of imidazole, benzimidazole and 2-mercaptobenzimidazole adsorption onto clean Cu(1 1 1) surface. Corros Sci 63:140–147CrossRefGoogle Scholar
  15. 15.
    Iori F, Corni S, Felice RD (2008) Unraveling the interaction between histidine side chain and the Au(111) surface: a DFT study. J Phys Chem C 112:13540–13545CrossRefGoogle Scholar
  16. 16.
    Loo BH, Tse Y, Parsons K, Adelman C, El-Hage A, Lee YG (2006) Surface-enhanced Raman spectroscopy of imidazole adsorbed on electrode and colloidal surfaces of Cu, Ag, and Au. J Raman Spectrosc 37:299–304CrossRefGoogle Scholar
  17. 17.
    Loo BH, Lee YG, El-Hage A (1987) Adsorption dynamics of imidazole and imidazolium ions on copper and silver electrode surfaces. Laser applications to Chem. Dyn SPIE 742:143–150Google Scholar
  18. 18.
    Jang J (2006) Advances in Polymer Science, vol 199. Sringer-Verlag, Berlin, pp 189–259Google Scholar
  19. 19.
    Margaryan KS, Sargsyan SH, Sargsyan AS (2016) Electrosynthesis of metal-containing polymeric coatings based on 1-vinylimidazole and acrylamide. Russ J Appl Chem 89:1261–1264CrossRefGoogle Scholar
  20. 20.
    Nyugen T-P (2011) Polymer-based nanocomposites for organic optoelectonic devices. A review. Surf Coat Technol 206:742–752CrossRefGoogle Scholar
  21. 21.
    Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: A message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56CrossRefGoogle Scholar
  22. 22.
    Malde AK, Zuo L, Breeze M, Stroet M, Poger D, Nair PC, Oostenbrink C, Mark AE (2011) An automated force field topology builder (ATB) and repository: version 1.0. J Chem Theory Comput 7:4026–4037CrossRefGoogle Scholar
  23. 23.
    Schüttelkopf AW, van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D 60:1355–1363CrossRefGoogle Scholar
  24. 24.
    Wright LB, Rodger PM, Corni S, Walsh TR (2013) GolP-CHARMM: First-principles based force fields for the interaction of proteins with Au(111) and Au(100). J Chem Theory Comput 9(3):1616–1630CrossRefGoogle Scholar
  25. 25.
    Astsatryan H, Sahakyan V, Shoukourian YU, Cros P-H, Dayde M, Dongarra J, Oster P (2015) Strengthening compute and data intensive capacities of Armenia, IEEE Proceedings of 14th RoEduNet International Conference – Networking in Education and Research (NER’2015), Craiova, Romania, pp 28–33Google Scholar
  26. 26.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  27. 27.
    Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models of water in relation to protein hydration. Intermol Forces:331–342Google Scholar
  28. 28.
    Nosé S (1984) A unified formulation of the constant temperature molecular-dynamics methods. J Chem Phys 81(1):511–519CrossRefGoogle Scholar
  29. 29.
    Hess B, Bekker H, Berendsen HJC, Fraaije J (1987) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472CrossRefGoogle Scholar
  30. 30.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089CrossRefGoogle Scholar
  31. 31.
    Verlet L (1967) Computer “Experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98–103CrossRefGoogle Scholar
  32. 32.
    Yoghida S, Ishida H (1983) A study of the orientation of imidazole on copper as corrosion inhibitor and possible adhesion promoter for electric devices. J Chem Phys 78:6960–6969CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ashot V. Meltonyan
    • 1
  • Armen H. Poghosyan
    • 1
    Email author
  • Serzhik H. Sargsyan
    • 2
  • Karine S. Margaryan
    • 3
  • Aram A. Shahinyan
    • 1
  1. 1.International Scientific-Educational Center of National Academy of SciencesYerevanArmenia
  2. 2.National Polytechnic University of ArmeniaYerevanArmenia
  3. 3.Yerevan State Medical University after M. HeratsiYerevanArmenia

Personalised recommendations