Polymer solar cells employing conjugated polyelectrolytes with different countercations

  • Yueqin ShiEmail author
  • Enxiang Yang
  • Jun Zhang
  • Zhenguo Ji
Original Contribution


Conjugated polyelectrolytes based on benzotriazole (BT) and benzothiadiazole (BTz) alt unit with a pendant sulfonate ion but different countercations were synthesized and named PBTBTz-SO3Na and PBTBTz-SO3TBA. PBTBTz-SO3Na was used as a cathode interface applied to polymer solar cells (PSCs), and ITO/PEDOT:PSS/active layer/cathode interlayer/Al was set as a device structure. The PSCs displayed an average power conversion efficiency (PCE) of 7.7%, revealing an unchanged efficiency in comparison with that of the control device fabricated from a CH3OH interlayer. TBA+, a different counteraction, was used instead of Na+ to further study the influence of counterions on the electrical property of PBTBTz-SO3. PBTBTz-SO3TBA was used as a cathode interface to fabricate two types of PSCs based on PTB7:PC71BM and PBDB-T:ITIC, and their improved average PCEs were 8.6% and 9.1%, respectively.


Conjugated polyelectrolytes Interlayer Different countercations Polymer solar cells Power conversion efficiency 



This work was supported by National Natural Science Foundation of China (51703045). The author would like to thank Hangzhou Dianzi University for the funding KYS205617011 to support this research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

Supplementary material

396_2019_4550_MOESM1_ESM.docx (327 kb)
ESM 1 (DOCX 327 kb)


  1. 1.
    Zhang J, Tan HS, Guo X, Facchetti A, Yan H (2018) Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat Energy.
  2. 2.
    Ma Y, Zhang M, Yan Y, Xin J, Wang T, Ma W et al (2017) Ladder-type dithienonaphthalene-based small-molecule acceptors for efficient nonfullerene organic solar cells. Chem Mater 29(18):7942–7952CrossRefGoogle Scholar
  3. 3.
    Park GE, Choi S, Park SY, Lee DH, Cho MJ, Choi DH (2017) Eco-friendly solvent-processed fullerene-free polymer solar cells with over 9.7% efficiency and long-term performance stability. Adv Energy Mater 7(19):1700566CrossRefGoogle Scholar
  4. 4.
    Zhao W, Qian D, Zhang S, Li S, Inganas O, Gao F et al (2016) Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv Mater 28(23):4734–4739CrossRefGoogle Scholar
  5. 5.
    Sun C, Wu Z, Hu Z, Xiao J, Zhao W, Li HW et al (2017) Interface design for high-efficiency non-fullerene polymer solar cells. Energy Environ Sci 10(8):1784–1791CrossRefGoogle Scholar
  6. 6.
    Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H et al (2016) Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv Mater 28(42):9423–9429CrossRefGoogle Scholar
  7. 7.
    Zhang G, Zhang K, Yin Q, Jiang XF, Wang Z, Xin J et al (2017) High-performance ternary organic solar cell enabled by a thick active layer containing a liquid crystalline small molecule donor. J Am Chem Soc 139(6):2387–2395CrossRefGoogle Scholar
  8. 8.
    Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B et al (2017) Molecular optimization enables over 13% efficiency in organic solar cells. J Am Chem Soc 139(21):7148–7151CrossRefGoogle Scholar
  9. 9.
    Ouyang X, Peng R, Ai L, Zhang X, Ge Z (2015) Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte. Nat Photonics 9(8):520–524CrossRefGoogle Scholar
  10. 10.
    Zheng Q, Tu Q, Tang C (2019) Ladder-type dithienocyclopentadibenzothiophene-cored wide bandgap polymers for efficient non-fullerene solar cells with large open-circuit voltages. J Mater Chem A.
  11. 11.
    He Z, Xiao B, Liu F, Wu H, Yang Y, Xiao S et al (2015) Single-junction polymer solar cells with high efficiency and photovoltage. Nat Photonics 9(3):174–179CrossRefGoogle Scholar
  12. 12.
    Chen CC, Chang WH, Yoshimura K, Ohya K, You J, Gao J et al (2014) An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%. Adv Mater 26(32):5670–5677CrossRefGoogle Scholar
  13. 13.
    Love JA, Proctor CM, Liu J, Takacs CJ, Sharenko A, Heeger AJ et al (2013) Film morphology of high efficiency solution-processed small-molecule solar cells. Adv Funct Mater 23(40):5019–5026CrossRefGoogle Scholar
  14. 14.
    Kan B, Feng H, Wan X, Liu F, Ke X, Wang Y et al (2017) A small molecule acceptor based on the heptacyclic benzodi(cyclopentadithiophene) unit for high efficient non-fullerene organic solar cells. J Am Chem Soc 139(13):4929–4934CrossRefGoogle Scholar
  15. 15.
    Kumar A, Pace G, Bakulin AA, Fang J, Ho PKH, Huck WTS et al (2013) Donor-acceptor interface modification by zwitterionic conjugated polyelectrolytes in polymer photovoltaics. Energy Environ Sci 6(5):1589–1596CrossRefGoogle Scholar
  16. 16.
    Mukhopadhyay T, Puttaraju B, Roy P, Dasgupta J, Meyer A, Patil S (2017) Facile synthesis and chain-length dependent optical and structural properties of diketopyrrolopyrrole-based oligomers. Chem Eur J 23(55):13718–13,723CrossRefGoogle Scholar
  17. 17.
    Lee C, Kim J, Moon Y, Kim D, Han H, Kim H et al (2018) Organic phototransistors with bulk heterojunction sensing-channel layers containing soluble difluorinated diketopyrrolopyrrole acceptor. Dyes Pigments 156:219–224CrossRefGoogle Scholar
  18. 18.
    Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR et al (2018) Non-fullerene acceptors for organic solar cells. Nat Rev Mater 3(3):18003CrossRefGoogle Scholar
  19. 19.
    Russ B, Robb MJ, Brunetti FG, Miller PL, Perry EE, Patel SN et al (2014) Power factor enhancement in solution-processed organic n-type thermoelectrics through molecular design. Adv Mater 26(21):3473–3477CrossRefGoogle Scholar
  20. 20.
    Shi Y, Kong Y, Song L, Zhang J, Ji Z, Ge Z (2018) Synthesis and characterization of polyelectrolytes based on benzotriazole backbone. Colloid Polym Sci 296(1):1–9CrossRefGoogle Scholar
  21. 21.
    Henson ZB, Zhang Y, Nguyen TQ, Seo JH, Bazan GC (2013) Synthesis and properties of two cationic narrow band gap conjugated polyelectrolytes. J Am Chem Soc 135(11):4163–4166CrossRefGoogle Scholar
  22. 22.
    Zhang H, Yao H, Hou J, Zhu J, Zhang J, Li W et al (2018) Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors. Adv Mater 30(28):1800613CrossRefGoogle Scholar
  23. 23.
    Hu T, Li F, Yuan K, Chen Y (2013) Efficiency and air-stability improvement of flexible inverted polymer solar cells using ZnO/poly(ethylene glycol) hybrids as cathode buffer layers. ACS Appl Mater Interfaces 5(12):5763–5770CrossRefGoogle Scholar
  24. 24.
    Yuan K, Chen L, Li F, Chen Y (2014) Nanostructured hybrid ZnO@CdS nanowalls grown in situ for inverted polymer solar cells. J Mater Chem C 2:1018–1027CrossRefGoogle Scholar
  25. 25.
    Zhang M, Zhang F, An Q, Sun Q, Wang W, Zhang J, Tang W (2016) Highly efficient ternary polymer solar cells by optimizing photon harvesting and charge carrier transport. Nano Energy 22:241–254CrossRefGoogle Scholar
  26. 26.
    He Z, Zhong C, Huang X, Wong W-Y et al (2011) Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv Mater 23(40):4636–4643CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yueqin Shi
    • 1
    Email author
  • Enxiang Yang
    • 1
  • Jun Zhang
    • 1
  • Zhenguo Ji
    • 1
  1. 1.College of Materials & Environmental EngineeringHangzhou Dianzi UniversityHangzhouPeople’s Republic of China

Personalised recommendations