Polyacrylamide-polyaniline composites: the effect of crosslinking on thermal, swelling, porosity, crystallinity, and conductivity properties

  • Mehmet Umur Celik
  • Sema EkiciEmail author
Original Contribution


When the synthesis of hydrogels, which are a hydrophilic group of polymers, occurs below the freezing point of water, the hydrogels gain a perfect property: porosity. Hydrogels with this property and resulting sponge-like structure are called cryogels (CRYs). The porosity of cryogels is affected by the amount of crosslinker used. In this study, how the amount of crosslinker affected the porosity initially was investigated, along with thermal, swelling, and crystallinity properties of polyacrylamide (PAAM) cryogels. Additionally, a series of composites (COMs) were synthesized with polyaniline (PAN) in the pore spaces of CRYs and again the effect of varying pore size on the electrical conductivity of COMs was researched. In the cryogel series, as the amount of N,N′-methylenbisacrylamide (MBA) increased, the pore size increased. The S, P, Ps, and Vp parameters increased in general with the MBA increase. The conductivity values of composites were determined in the interval of 1.6 × 10−3-4.5 × 10−3 S cm−1.

Graphical Abstract


Cryogel Porosity Crosslinking Conductive cryogels Polyaniline 



The authors would like to express their thanks to Assoc. Prof. Dr. Barbaros Demirselcuk (Canakkale Onsekiz Mart University, Technical Sciences Vocational School, Department of Energy and Electric) for conductivity measurements.

Funding information

This research was supported by the Scientific Projects Commission of Canakkale Onsekiz Mart University, 2017/1341.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Savina IN,Galaev IY (2016) Production of synthetic cryogels and the study of porosity theory, supermacroporous cryogels: biomedical and biotechnological applications. In: Kumar A (ed) CRC Press, pp 91–110Google Scholar
  2. 2.
    Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21:445–451CrossRefGoogle Scholar
  3. 3.
    Lozinsky VI (2008) Polymeric cryogels as a new family of macroporous and supermacroporous materials for biotechnological purposes. Russ Chem Bull Int Ed 57:1015–1032CrossRefGoogle Scholar
  4. 4.
    Henderson TMA, Ladewig K, Haylock DN, McLeanb KM, O'Connor AJ (2013) Cryogels for biomedical applications. J Mater Chem B 1:2682–2695CrossRefGoogle Scholar
  5. 5.
    Yang C, Zhou X, Liu Y, Wang J, Tian L, Zhang Y, Hu X (2016) Charged groups synergically enhance protein imprinting in amphoteric polyacrylamide cryogels. J Appl Polym Sci 133:1–6Google Scholar
  6. 6.
    Yang C, Liu G, Zhou X, Liu Y, Wang J, Tian L, Hu X, Wang Y (2015) Polyacrylamide based cryogels as catalysts for biodiesel. Catal Lett 145:1778–1783CrossRefGoogle Scholar
  7. 7.
    Sedlacik T, Proks V, Slouf M, Duskova-Smrckova M, Studenovska H, Rypacek F (2015) Macroporous biodegradable cryogels of synthetic poly(α-amino acids). Biomacromolecules 16:3455–3465CrossRefGoogle Scholar
  8. 8.
    Wang J, Wang Q, Tian L, Yang C, Yu S, Yang C (2015) Research progress of the molecularly imprinted cryogel. Chin J Anal Chem 43:1777–1784CrossRefGoogle Scholar
  9. 9.
    Sapurina I, Stejskal J (2008) The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym Int 57:1295–1325CrossRefGoogle Scholar
  10. 10.
    Mostafaei A, Zolriasatein A (2012) Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Prog Nat Sci-Mat 22:273–280CrossRefGoogle Scholar
  11. 11.
    Sedenkova I, Trchova M, Stejskal J (2008) Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in water-FTIR and Raman spectroscopic studies. Polym Degrad Stabil 93:2147–2157CrossRefGoogle Scholar
  12. 12.
    Gurunathan K, Amalnerkar DP, Trivedi DC (2003) Synthesis and characterization of conducting polymer composite (PAn/TiO2) for cathode material in rechargeable battery. Mater Lett 57:1642–1648CrossRefGoogle Scholar
  13. 13.
    Jia W, Segal E, Kornemandel D, Lamhot Y, Narkis M, Siegmann A (2002) Polyaniline-DBSA/organophilic clay nanocomposites: synthesis and characterization. Synthetic Met 128:115–120CrossRefGoogle Scholar
  14. 14.
    Peng C, Zhang S, Jewell D, Chen GZ (2008) Carbon nanotube and conducting polymer composites for supercapacitors. Prog Nat Sci 18:777–788CrossRefGoogle Scholar
  15. 15.
    Li D, Huang J, Kaner RB (2009) Polyaniline nanofibers: a unique polymernanostructure for versatile applications. Acc Chem Res 42:135–145CrossRefGoogle Scholar
  16. 16.
    Stejskal J, Gilbert RG (2002) Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure Appl Chem 74:857–867CrossRefGoogle Scholar
  17. 17.
    Blinova NV, Stejskal J, Trchova M, Prokes J (2008) Control of polyaniline conductivity and contact angles by partial protonation. Polym Int 57:66–69CrossRefGoogle Scholar
  18. 18.
    Molapo KM, Ndangili PM, Ajayi RF, Mbambisa G, Mailu SM, Njomo N, Masikini M, Baker P, Iwuoha II (2012) Electronics of conjugated polymers (I): polyaniline. Int J Electrochem Sci 7:11859–11875Google Scholar
  19. 19.
    Cardoso MJR, Lima MFS, Lenz DM (2007) Polyaniline synthesized with functionalized sulfonic acids for blends manufacture. Mater Res 10:425–429CrossRefGoogle Scholar
  20. 20.
    Bhadra S, Khastgir D, Singhaa NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810CrossRefGoogle Scholar
  21. 21.
    Carvalho BMA, Da Silva SL, Da Silva LHM, Minim VPR, Da Silva MCH, Carvalho LM, Minim LA (2014) Cryogel poly(acrylamide): synthesis, structure and applications. Sep Purif Rev 43:241–262CrossRefGoogle Scholar
  22. 22.
    Gun'ko VM, Savina IN, Mikhalovsky SV (2013) Cryogels: morphological, structural and adsorption characterisation. Adv Colloid Interf Sci 187:1–46CrossRefGoogle Scholar
  23. 23.
    Xu F, Zheng G, Wu D, Liang Y, Li Z, Fu R (2010) Improving electrochemical performance of polyaniline by introducing carbon aerogel as filler. Phys Chem Chem Phys 12:3270–3275CrossRefGoogle Scholar
  24. 24.
    Tang Q, Wu J, Sun H, Lin J, Fan S, Hu D (2008) Polyaniline/polyacrylamide conducting composite hydrogel with a porous structure. Carbohyd Polym 74:215–219CrossRefGoogle Scholar
  25. 25.
    Tang Q, Wu J, Sun H, Fan S, Hu D, Lin J (2007) Superabsorbent conducting hydrogel from poly (acrylamide-aniline) with thermo-sensitivity and release properties. Carbohyd Polym 73:473–481CrossRefGoogle Scholar
  26. 26.
    Okay O, Lozinsky VI (2014) Synthesis and structure–property relationships of cryogels. Adv Polym Sci 263:103–157CrossRefGoogle Scholar
  27. 27.
    Okay O (2000) Macroporous copolymer networks. Prog Polym Sci 25:711–779CrossRefGoogle Scholar
  28. 28.
    Bhattacharya P, Dhibar S, Hatui G, Mandal A, Das T, Das CK (2014) Graphene decorated with hexagonal shaped M-type ferrite and polyaniline wrapper: a potential candidate for electromagnetic wave absorbing and energy storage device applications. R Soc Chem 4:17039–17053Google Scholar
  29. 29.
    Xu H, Zhang J, Chen Y, Lu H, Zhuang J (2014) Electrochemical polymerization of polyaniline doped with Cu2+ as the electrode material for electrochemical supercapacitors. R Soc Chem 4:5547–5552Google Scholar
  30. 30.
    Gundogan N, Okay O, Oppermann W (2004) Swelling, elasticity and spatial ınhomogeneity of poly(N, N-dimethylacrylamide) hydrogels formed at various polymer concentrations. Macromol Chem Phys 205:814–823CrossRefGoogle Scholar
  31. 31.
    Okay O, Kurz M, Lutz K, Funke W (1995) Cyclization and reduced pendant vinyl group reactivity during the free-radical crosslinking polymerization of 1, 4-divinylbenzene. Macromolecules 28:2728–2737CrossRefGoogle Scholar
  32. 32.
    Funke W, Okay O, Joos-Müller B (1998) Microgels-intramolecularly crosslinked macromolecules with a globular structure. Adv Polym Sci 136:139–234CrossRefGoogle Scholar
  33. 33.
    Ansari R, Price WE, Wallace GG (1996) Effect of thermal treatment on electroactivity of polyaniline. Polymer 37:917–923CrossRefGoogle Scholar
  34. 34.
    Pandey SS, Gerard M, Sharma AL, Malhotra BD (2000) Thermal analysis of chemically synthesized polyemeraldine base. J Appl Polym Sci 75:149–155CrossRefGoogle Scholar
  35. 35.
    Mentus S, Ciric-Marjanovic G, Miroslava T, Stejkal J (2009) Conducting carbonized polyaniline nanotubes. Nanotechnology 20:245601CrossRefGoogle Scholar
  36. 36.
    Bhandra S, Khastgir D (2008) Extrinsic and intrinsic structural change during heat treatment of polyaniline. Polym Degrad Stab 93:1094–1099CrossRefGoogle Scholar
  37. 37.
    Bhat NV, Joshi NV (1993) Investigation of the properties of polyacrylamide-polyaniline composite and its application as a battery electrode. J Appl Polym Sci 50:1423–1427CrossRefGoogle Scholar
  38. 38.
    Dai T, Qing X, Wang J, Shen C, Lu Y (2010) Interfacial polymerization to high-quality polyacrylamide/polyaniline composite hydrogels. Compos Sci Technol 70:498–503CrossRefGoogle Scholar
  39. 39.
    Verma PK, Sardar PS, Ghosh S, Biswas M (2009) Conducting nanocomposites of polyacrylamide with acetylene black and polyaniline. Polym Compos 30:490–496CrossRefGoogle Scholar
  40. 40.
    Xiang Q, Xie HQ (1996) Preparation and characterization of alkali soluble polyacrylamide-g-polyaniline. Eur Polym J 32:865–868CrossRefGoogle Scholar
  41. 41.
    Das B, Kar S, Chakraborty S, Chakraborty D, Gangopadhyay S (1998) Synthesis and characterization of polyacrylamide–polyaniline conductive blends. J Appl Polym Sci 69:841–844CrossRefGoogle Scholar
  42. 42.
    Prabhakar R, Kumar D (2016) Influence of dopant ions on the properties of conducting polyacrylamide/polyaniline hydrogels. Polym-Plast Technol Eng 55:46–53CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Graduate School of Natural and Applied Sciences, Terzioglu CampusCanakkale Onsekiz Mart UniversityCanakkaleTurkey
  2. 2.Faculty of Sciences and Arts, Department of Chemistry Hydrogel Research Laboratory Terzioglu CampusCanakkale Onsekiz Mart UniversityCanakkaleTurkey

Personalised recommendations