Colloid and Polymer Science

, Volume 297, Issue 9, pp 1245–1253 | Cite as

Sulfonate-functionalized polyacrylonitrile-based nanoparticles; synthesis, and conversion to pH-sensitive nanogels

  • Seyed Mehdi Molaei
  • Hossein Adelnia
  • Amir Mohammad Seif
  • Jaber Nasrollah GavganiEmail author
Short Communication


The present paper reports the synthesis of polyacrylonitrile (PAN)-based nanoparticles through soap-free emulsion polymerization (SFEP). Employing different types of co-solvent, as well as ionic commoners, synthesis of pure PAN nanoparticles was unsuccessful. However, when vinyl acetate,or methyl (meth) acrylate was introduced (conc. > 10 mol%), crystallization of PAN was decreased and consequently stable nanoparticles in the size range of 80–250 nm were achieved. Such a co-polymerization not only produced clean and functionalized nanoparticles but also allowed addition of a cross-linker without sacrificing colloidal stability. As a model, the cross-linked poly(acrylonitrile-co-vinyl acetate) nanoparticles were hydrolyzed in alkaline media, which yielded poly(acrylic acid-co-vinyl alcohol) nanogels. The swelling measurement exhibited that the prepared nanogels have a pH-sensitive behavior.


Soap-free emulsion polymerization Polyacrylonitrile pH-sensitive nanogels Electrostatic stabilization 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2019_4543_MOESM1_ESM.docx (917 kb)
ESM 1 (DOCX 916 kb)


  1. 1.
    Ugelstad J, Stenstad P, Kilaas L, Prestvik WS, Rian A, Nustad K, Herje R, Berge A (1996) Biochemical and biomedical application of monodisperse polymer particles. Macromolecular Symposia 101(1):491–500Google Scholar
  2. 2.
    Serpe MJ, Kang Y, Zhang QM (2016) Colloidal photonic crystals for sensor applications, in photonic materials for sensing, biosensing and display devices. Springer, Volume 229:51–78Google Scholar
  3. 3.
    Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P (2013) Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 42(3):1147–1235CrossRefGoogle Scholar
  4. 4.
    Gavgani JN, Shahrousvand M, Aslzadeh MM (2013) Monitoring the effects of homogeneity methanol/water/monomer on the mode of polymerization of styrene: dispersion polymerization versus emulsion polymerization. Colloid Polym Sci 291(10):2299–2309CrossRefGoogle Scholar
  5. 5.
    Mahyari M, Gavgani JN, Hasani A, Kim JK, Kim SY (2017) Monodisperse copper nanoparticles on porphyrin-derived Fe–N-doped carbon for hydrogen generation from ammonia borane. Sci Adv Mater 9(9):1572–1577CrossRefGoogle Scholar
  6. 6.
    Hasani A, Gavgani JN, Pashaki RM, Baseghi S, Salehi A, Heo D, Kim SY, Mahyari M (2017) Poly (3, 4 ethylenedioxythiophene): poly (styrenesulfonate)/iron (III) porphyrin supported on S and N co-doped graphene quantum dots as a hole transport layer in polymer solar cells. Sci Adv Mater 9(9):1616–1625CrossRefGoogle Scholar
  7. 7.
    Jolfaei AF, Gavgani JN, Jalali A, Goharpey F (2015) Effect of organoclay and compatibilizers on microstructure, rheological and mechanical properties of dynamically vulcanized EPDM/PP elastomers. Polym Bull 72(5):1127–1144CrossRefGoogle Scholar
  8. 8.
    Delgado M, Lázaro A, Mazo J, Zalba B (2012) Review on phase change material emulsions and microencapsulated phase change material slurries: materials, heat transfer studies and applications. Renew Sust Energ Rev 16(1):253–273CrossRefGoogle Scholar
  9. 9.
    Shirin-Abadi AR, Mahdavian AR, Khoee S (2011) New approach for the elucidation of PCM nanocapsules through miniemulsion polymerization with an acrylic shell. Macromolecules 44(18):7405–7414CrossRefGoogle Scholar
  10. 10.
    Adelnia H, Gavgani JN, Soheilmoghaddam M (2015) Fabrication of composite polymer particles by stabilizer-free seeded polymerization. Colloid Polym Sci 293(8):2445–2450CrossRefGoogle Scholar
  11. 11.
    Adelnia H, Nasrollah Gavgani J, Riazi H, Cheraghi Bidsorkhi H (2014) Transition behavior, surface characteristics and film formation of functionalized poly (methyl methacrylate-co-butyl acrylate) particles. Prog Org Coat 77(11):1826–1833CrossRefGoogle Scholar
  12. 12.
    Vatankhah-Varnosfaderani M, Hu X, Li Q, Adelnia H, Ina M, Sheiko SS (2018) Universal coatings based on zwitterionic–dopamine copolymer microgels. ACS Appl Mater Interfaces 10(24):20869–20875Google Scholar
  13. 13.
    Vatankhah-Varnoosfaderani M, Ina M, Adelnia H, Li Q, Zhushma AP, Hall LJ, Sheiko SS (2016) Well-defined zwitterionic microgels: synthesis and application as acid-resistant microreactors. Macromolecules 49(19):7204–7210Google Scholar
  14. 14.
    Tabra FA, Salehiravesha F, Adelnia H, Gavgania JN, Mahyari M (2019) High sensitivity ammonia detection using metal nanoparticles decorated on graphene macroporous frameworks/polyaniline hybrid. Talanta 197:457–464CrossRefGoogle Scholar
  15. 15.
    Gavgani JN, Adelnia H, Gudarzi MM (2014) Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. J Mater Sci 49(1):243–254CrossRefGoogle Scholar
  16. 16.
    Gavgani JN, Adelnia H, Zaarei D, Moazzami Gudarzi M (2016) Lightweight flexible polyurethane/reduced ultralarge graphene oxide composite foams for electromagnetic interference shielding. RSC Adv 6(33):27517–27527CrossRefGoogle Scholar
  17. 17.
    Gavgani JN, Dehsari HS, Hasani A, Mahyari M, Shalamzari EK, Salehi A, Taromi FA (2015) A room temperature volatile organic compound sensor with enhanced performance, fast response and recovery based on N-doped graphene quantum dots and poly (3, 4-ethylenedioxythiophene)–poly (styrenesulfonate) nanocomposite. RSC Adv 5(71):57559–57567CrossRefGoogle Scholar
  18. 18.
    Gavgani JN, Hasani A, Nouri M, Mahyari M, Salehi A (2016) Highly sensitive and flexible ammonia sensor based on S and N co-doped graphene quantum dots/polyaniline hybrid at room temperature. Sensors Actuators B Chem 229:239–248CrossRefGoogle Scholar
  19. 19.
    Nasrollah Gavgani J, Goharpey F, Velankar S, Foudazi R (2018) Suppressing droplet coalescence and aggregation in immiscible homopolymer blends by interfacially cross-linked compatibilizers. J Rheol 62(5):1217–1231CrossRefGoogle Scholar
  20. 20.
    Gavgani JN, Jolfaei AF, Hakkak F, Goharpey F (2015) Rheological, morphological and thermal properties of pickering-like EVA/organoclay nanocomposites. J Polym Res 22(6):99CrossRefGoogle Scholar
  21. 21.
    Baseghi S, Garmabi H, Gavgani JN, Adelnia H (2015) Lightweight high-density polyethylene/carbonaceous nanosheets microcellular foams with improved electrical conductivity and mechanical properties. J Mater Sci 50(14):4994–5004CrossRefGoogle Scholar
  22. 22.
    Gavgani JN et al (2014) Intumescent flame retardant polyurethane/starch composites: thermal, mechanical, and rheological properties. J Appl Polym Sci 131(23):41158–41167Google Scholar
  23. 23.
    Gavgani JN, Adelnia H, Mir Mohamad Sadeghi G, Zafari F (2014) Intumescent flame retardant polyurethane/starch composites: thermal, mechanical, and rheological properties. J Appl Polym Sci 131(23):41158-41167Google Scholar
  24. 24.
    Arshady R (1992) Suspension, emulsion, and dispersion polymerization: a methodological survey. Colloid Polym Sci 270(8):717–732CrossRefGoogle Scholar
  25. 25.
    Riazi H, Mohammadi N, Mohammadi H (2013) Emulsion copolymerization of methyl methacrylate/butyl acrylate/iodine system to monosize rubbery nanoparticles containing iodine and triiodide mixture. Ind Eng Chem Res 52(7):2449–2456CrossRefGoogle Scholar
  26. 26.
    Shibuya K, Nagao D, Ishii H, Konno M (2014) Advanced soap-free emulsion polymerization for highly pure, micron-sized, monodisperse polymer particles. Polymer 55(2):535–539CrossRefGoogle Scholar
  27. 27.
    Chern C (2006) Emulsion polymerization mechanisms and kinetics. Prog Polym Sci 31(5):443–486CrossRefGoogle Scholar
  28. 28.
    Camli ST, Buyukserin F, Balci O, Budak GG (2010) Size controlled synthesis of sub-100nm monodisperse poly (methylmethacrylate) nanoparticles using surfactant-free emulsion polymerization. J Colloid Interface Sci 344(2):528–532CrossRefGoogle Scholar
  29. 29.
    Adelnia H, Riazi H, Saadat Y, Hosseinzadeh S (2013) Synthesis of monodisperse anionic submicron polystyrene particles by stabilizer-free dispersion polymerization in alcoholic media. Colloid Polym Sci 291(7):1741–1748CrossRefGoogle Scholar
  30. 30.
    Xu Z, Yi C, Cheng S, Zhang J (1997) Emulsifier-free emulsion copolymerization of styrene and butyl acrylate with cationic comonomer. J Appl Polym Sci 66(1):1–9CrossRefGoogle Scholar
  31. 31.
    Adelnia H, Pourmahdian S (2014) Soap-free emulsion polymerization of poly (methyl methacrylate-co-butyl acrylate): effects of anionic comonomers and methanol on the different characteristics of the latexes. Colloid Polym Sci 292(1):197–205CrossRefGoogle Scholar
  32. 32.
    Feng L, Li S, Li H, Zhai J, Song Y, Jiang L, Zhu D (2002) Super-hydrophobic surface of aligned polyacrylonitrile nanofibers. Angew Chem 114(7):1269–1271CrossRefGoogle Scholar
  33. 33.
    Rahaman MSA, Ismail AF, Mustafa A (2007) A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab 92(8):1421–1432CrossRefGoogle Scholar
  34. 34.
    Wang J, Qin W, Liu X, Liu H (2013) Synthesis and characterization of hydroxyapatite on hydrolyzed polyacrylonitrile nanofiber templates. RSC Adv 3(28):11132–11139CrossRefGoogle Scholar
  35. 35.
    Landfester K, Antonietti M (2000) The polymerization of acrylonitrile in miniemulsions:“crumpled latex particles” or polymer nanocrystals. Macromol Rapid Commun 21(12):820–824CrossRefGoogle Scholar
  36. 36.
    Dyatlov V et al (2012) Hydrolysis of polyacrylonitrile in aqueous solution of sodium carbonate. Polym Sci, Ser B 54(3–4):161–166CrossRefGoogle Scholar
  37. 37.
    Litmanovich AD, Platé NA (2000) Alkaline hydrolysis of polyacrylonitrile. On the reaction mechanism. Macromol Chem Phys 201(16):2176–2180CrossRefGoogle Scholar
  38. 38.
    Ermakov IV, Rebrov AI, Litmanovich AD, Platé NA (2000) Alkaline hydrolysis of polyacrylonitrile, 1. Structure of the reaction products. Macromol Chem Phys 201(13):1415–1418CrossRefGoogle Scholar
  39. 39.
    Şanli O (1990) Homogeneous hydrolysis of polyacrylonitrile by potassium hydroxide. Eur Polym J 26(1):9–13CrossRefGoogle Scholar
  40. 40.
    Gupta ML, Gupta B, Oppermann W, Hardtmann G (2004) Surface modification of polyacrylonitrile staple fibers via alkaline hydrolysis for superabsorbent applications. J Appl Polym Sci 91(5):3127–3133CrossRefGoogle Scholar
  41. 41.
    Cheng G, Mi L, Cao Z, Xue H, Yu Q, Carr L, Jiang S (2010) Functionalizable and ultrastable zwitterionic nanogels. Langmuir 26(10):6883–6886CrossRefGoogle Scholar
  42. 42.
    Oh JK, Bencherif SA, Matyjaszewski K (2009) Atom transfer radical polymerization in inverse miniemulsion: a versatile route toward preparation and functionalization of microgels/nanogels for targeted drug delivery applications. Polymer 50(19):4407–4423CrossRefGoogle Scholar
  43. 43.
    Dowding PJ, Vincent B, Williams E (2000) Preparation and swelling properties of poly (NIPAM)“minigel” particles prepared by inverse suspension polymerization. J Colloid Interface Sci 221(2):268–272CrossRefGoogle Scholar
  44. 44.
    Duan L, Chen M, Zhou S, Wu L (2009) Synthesis and characterization of poly (N-isopropylacrylamide)/silica composite microspheres via inverse Pickering suspension polymerization. Langmuir 25(6):3467–3472CrossRefGoogle Scholar
  45. 45.
    Atena Golabdar, Hossein Adelnia, Nooshafarin Moshtzan, Jaber Nasrollah Gavgani, Hossein Izadi‐Vasafi, (2018) Anti-bacterial poly(vinyl alcohol) nanocomposite hydrogels reinforced with synthesized silver nanoparticles. Polymer Composites 40(4):1322-1328CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Seyed Mehdi Molaei
    • 1
  • Hossein Adelnia
    • 2
  • Amir Mohammad Seif
    • 3
  • Jaber Nasrollah Gavgani
    • 4
    Email author
  1. 1.Department of Polymer EngineeringIslamic Azad University-Shahreza BranchShahrezaIran
  2. 2.Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneAustralia
  3. 3.Faculty of New Sciences and TechnologiesUniversity of TehranTehranIran
  4. 4.Department of Polymer Engineering and Color TechnologyAmirkabir University of TechnologyTehranIran

Personalised recommendations