Advertisement

Colloid and Polymer Science

, Volume 297, Issue 9, pp 1213–1221 | Cite as

RAFT synthesized poly-N-vinylsuccinimide macromolecules: properties in dilute solutions

  • G. M. PavlovEmail author
  • O. V. OkatovaEmail author
  • A. A. Gosteva
  • A. S. Gubarev
  • A. I. Gostev
  • E.V. Sivtsov
Original Contribution
  • 37 Downloads

Abstract

A complex study of the properties of poly-N-vinylsuccinimides synthesized by the reversible addition-fragmentation chain transfer polymerization (RAFT) was carried out by the methods of molecular hydrodynamics. Molecular masses were determined from the sedimentation-diffusion analysis, the range was 5000 < M, g/mol < 68000. Scaling relationships of hydrodynamic characteristics with molecular mass were established, and the conformational characteristics of molecular chains of poly-N-vinylsuccinimides were estimated. The value of the statistical segment, determined from the data on translational and rotational friction, was (2.7 ± 0.1) nm. The polydispersity of several samples was evaluated from the results on velocity sedimentation.

Keywords

Raft polymerized poly-N-vinylsuccinimide Sedimentation-diffusion analysis Molecular mass Conformation 

Notes

Funding information

The work is done within the framework of the scientific work plan (state task) of Institute of macromolecular compounds RAS.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2019_4540_MOESM1_ESM.docx (100 kb)
ESM 1 (DOCX 99 kb)

References

  1. 1.
    Kirsh YE (1998) Water soluble poly(N-vinylamides): synthesis and physicochemical properties. Wiley, Chichester.  https://doi.org/10.1002/(SICI)1097-0126(199905)48:5%3C426::AID-PI163%3E3.0.CO;2-%23 Google Scholar
  2. 2.
    Cortez-Lemus NA (2016) Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Prog Polym Sci 53:1–51.  https://doi.org/10.1016/j.progpolymsci.2015.08.001 CrossRefGoogle Scholar
  3. 3.
    Eisele M, Burchard W (1990) Hydrophobic water−soluble polymers. 1. Dilute solution properties of poly(1-vinyl-2-piperidone) and poly(N-vinylcaprolactam). Macromol Chem Phys 191:169–184.  https://doi.org/10.1002/macp.1990.021910114 CrossRefGoogle Scholar
  4. 4.
    Pavlov G, Panarin E, Korneeva E, Kurochkin E, Baikov V, Uschakova V (1990) Hydrodynamic properties of poly(1-vinyl-2-pyrrolidone) molecules in dilute solution. Macromol Chem Phys 191:2889–2899.  https://doi.org/10.1002/macp.1990.021911205 CrossRefGoogle Scholar
  5. 5.
    Panarin E, Lavrov N, Solovsky M, Shalnova L (2014) Polymers - carriers of biologically active substances (in russian), OCOP “profession”, St. Petersburg ISBN: 978-5-91884-058-0Google Scholar
  6. 6.
    Kirsh YE (1988) Poly-N-vinylpirrolidone and other Poly-N-vinylamides: synthesis and physicochemical properties (in russian), Nauka, Moscow. ISBN: 5-02-004498-9Google Scholar
  7. 7.
    Lavrov N, Shalnova L, Nikolaev A (1997) Features of obtaining, properties and prospects of use of (co)polymers of N-vinylsuccinimide. J Appl Chem (In Rusian) 70:1356–1363 ISSN 0044-4618Google Scholar
  8. 8.
    Shalnova L, Nikolaev A (2000) Medical supplies based on -N-vinylamidosuccinic acid copolymers. Plastics 3:42–45 ISSN 0554-2901Google Scholar
  9. 9.
    Lavrov N (2011) Polymers based on N-vinyl succinimide, OCOP “Profession”, St. Petersburg. ISBN: 978-5-91884-031-3Google Scholar
  10. 10.
    Schlumbom PC (1960) Beitrag zur Polymerisation des N-Vinylsuccinimids. PhD thesis, Eidgentsssischen Technischen Hochschule Zurich, Juris-Verlag, Zurich.  https://doi.org/10.3929/ethz-a-000087882
  11. 11.
    Moad G (2015) RAFT polymerization – then and now. In: Matyjaszewski K, Sumerlin BS, Tsarevsky NV and Chiefari J (eds). Controlled radical polymerization: mechanisms. Australia: ACS Symposium Series, 1187: ch.12. 211-246.  https://doi.org/10.1021/bk-2015-1187.ch012 .
  12. 12.
    Barner-Kowollik C (2008) Handbook of RAFT polymerization. Wiley, Weinheim.  https://doi.org/10.1002/9783527622757.ch1 CrossRefGoogle Scholar
  13. 13.
    Chernikova E, Sivtsov E (2017) Reversible addition-fragmentation chain-transfer polymerization: fundamentals and use in practice. Polym Sci Ser B 59:117–146. https://link.springer.com/article/10.1134/S1560090417020038.  https://doi.org/10.1134/S1560090417020038, https://www.researchgate.net/publication/316703333_Reversible_addition-fragmentation_chain-transfer_polymerization_Fundamentals_and_use_in_practice
  14. 14.
    Tanford C (1961) Physical chemistry of macromolecules, vol 62. Wiley, New York, pp S22–S23.  https://doi.org/10.1002/pol.1962.1206217338 Google Scholar
  15. 15.
    Tsvetkov V, Eskin V, Frenkel S (1971) Structure of macromolecules in solution. National Lending Library for science and technology. Google Scholar, BostonGoogle Scholar
  16. 16.
    Cantor CR, Schimmel PR (1980) Biophysical chemistry. W H Freeman & Company, San Francisco.  https://doi.org/10.1080/00327488108068729 Google Scholar
  17. 17.
    Fujita H (1990) Polymer solutions. Elsevier, Amsterdam eBook ISBN: 9780444596635Google Scholar
  18. 18.
    Yamakawa H (1971) Modern theory of polymer solutions. ed by Hurper & Row, Kioto. http://hdl.handle.net/2433/50527
  19. 19.
    Tsvetkov VN (1989) Rigid-chain polymers: hydrodynamic and optical properties in solution. Consultants Bureau Google ScholarGoogle Scholar
  20. 20.
    Yamakawa H, Fujii M (1973) Translational friction coefficient of wormlike chains. Macromolecules 6:407–415.  https://doi.org/10.1021/ma60033a018 https://pubs.acs.org/doi/abs/10.1021/ma60033a018 CrossRefGoogle Scholar
  21. 21.
    Yamakawa H, Fujii M (1974) Intrinsic viscosity of wormlike chains. Determination of the Shift Factor. Macromolecules 7:128–135. https://pubs.acs.org/doi/abs/10.1021/ma60037a024.  https://doi.org/10.1021/ma60037a024 CrossRefGoogle Scholar
  22. 22.
    Chernikova E, Sivtsov E (2017) Reversible addition-fragmentation chain-transfer polymerization: fundamentals and use in practice. Polym Sci Ser B 59:117–146.  https://doi.org/10.1134/S1560090417020038 CrossRefGoogle Scholar
  23. 23.
    Sivtsov E, Chernikova E, Gostev A, Garina E (2010) Controlled free-radical copolymerization of n-vinyl succinimide and n-butyl acrylate via a reversible addition–fragmentation chain transfer (raft) technique. Macromol Symp 296:112–120.  https://doi.org/10.1002/masy.201051017 CrossRefGoogle Scholar
  24. 24.
    Lavrenko P, Okatova O (1977) The new cell and method of forming a boundary in the study of diffusion of macromolecules in solution. Polym Sci USSR 19:3049–3054.  https://doi.org/10.1016/0032-3950(77)90328-8 CrossRefGoogle Scholar
  25. 25.
    Lavrenko V, Gubarev A, Lavrenko P, Okatova O, Pavlov G, Panarin E (2013) Processing of digital interference images obtained on the Tsvetkov’s diffusometer. Ind Lab Mater Diagn (in Russian) 79:33–36 ISSN:2588-0187Google Scholar
  26. 26.
    Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J 78:1606–1619.  https://doi.org/10.1016/S0006-3495(00)76713-0 CrossRefGoogle Scholar
  27. 27.
    Brown P, Schuck P (2008) A new adaptive grid-size algorithm for the simulation of sedimentation velocity profiles in analytical ultracentrifugation. Comput Phys Commun 178:105–120.  https://doi.org/10.1016/j.cpc.2007.08.012 CrossRefGoogle Scholar
  28. 28.
    Kratky O, Leopold H, Stabinger H (1973) The determination of the partial specific volume of proteins by the mechanical oscillator technique. Methods Enzymol 27:98–110.  https://doi.org/10.1016/S0076-6879(73)27007-6 CrossRefGoogle Scholar
  29. 29.
    Tsvetkov V, Lavrenko P, Bushin S (1984) Hydrodynamic invariant of polymer molecules. J Polym Sci Polym Chem 22:3447–3460.  https://doi.org/10.1002/pol.1984.170221160 CrossRefGoogle Scholar
  30. 30.
    Hearst J, Stockmayer W (1962) Sedimentation constants of broken chains and wormlike coils. J Chem Phys 37:1425–1433.  https://doi.org/10.1063/1.1733300 CrossRefGoogle Scholar
  31. 31.
    Bushin S, Tsvetkov V, Lysenko E, Emelyanov V (1981) The sedimentation-diffusion and viscometric analysis of the conformation properties and molecular rigidity of ladder-like polyphenyl siloxane in solution. Polym Sci Ser A 23:2705–2715. https://scholar.google.ru/scholar?hl=ru&as_sdt=0%2C5&q=DOI%3A+10.1016%2F0032-3950%2881%2990043-5&btnG.  https://doi.org/10.1016/0032-3950(81)90043-5 Google Scholar
  32. 32.
    Tsvetkov V, Lavrenko P, Pavlov G, Bushin S, Astapenko E, Boikov A, Shildyaeva N, Didenko S, Malichenko B (1982). Polym Sci Ser A 24:2689–2700Google Scholar
  33. 33.
    Pavlov G, Selyunin S, Shildyaeva N, Yakopson S, Efros L (1985) Translational friction and the characteristic visocity of polyamide benzimidazole molecules in solution. Polym Sci Ser A 27:1823–1829.  https://doi.org/10.1016/0032-3950(85)90200-X Google Scholar
  34. 34.
    Bohdanecky M (1983) Monte Carlo calculation of hydrodynamic properties of linear and cyclic polymers in good solvents. Macromolecules 16:1483–1492. https://pubs.acs.org/doi/abs/10.1021/ma00243a014, https://scholar.google.ru/scholar?hl=ru&as_sdt=0%2C5&q=https%3A%2F%2Fpubs.acs.org%2Fdoi%2Fabs%2F10.1021%2Fma00243a014&btnG.  https://doi.org/10.1021/ma00243a014
  35. 35.
    Zimm BH (1980) Chain molecule hydrodynamics by the Monte-Carlo method and the validity of the Kirkwood-Riseman approximation. Macromolecules 13:592–602. https://pubs.acs.org/doi/abs/10.1021/ma60075a022. https://scholar.google.ru/scholar?hl=ru&as_sdt=0%2C5&q=https%3A%2F%2Fpubs.acs.org%2Fdoi%2Fabs%2F10.1021%2Fma60075a022&btnG
  36. 36.
    de la Torre JG, Jimenez A, Freire JJ (1982) Monte Carlo calculation of hydrodynamic properties of freely jointed, freely rotating, and real polymethylene chains. Macromolecules 15:148–154. https://scholar.google.ru/scholar?hl=ru&as_sdt=0%2C5&q=https%3A%2F%2Fpubs.acs.org%2Fdoi%2Fabs%2F10.1021%2Fma00229a030&btnG.  https://doi.org/10.1021/ma00229a030, https://pubs.acs.org/doi/abs/10.1021/ma00229a030
  37. 37.
    Bernal JMG, Tirado MM, Freire JJ, de la Torre JG (1991) Monte Carlo calculation of hydrodynamic properties of linear and cyclic polymers in good solvents. Macromolecules 24:593–598. https://pubs.acs.org/doi/abs/10.1021/ma00002a038, https://scholar.google.ru/scholar?hl=ru&as_sdt=0%2C5&q=https%3A%2F%2Fpubs.acs.org%2Fdoi%2Fabs%2F10.1021%2Fma00002a038&btnG.  https://doi.org/10.1021/ma00002a038
  38. 38.
    Oono Y (1985) Statistical physics of polymer solutions: conformation-space renormalization-group approach. In: Prigogine I, Rice SA (eds) Advances in chemical physics, vol 61, pp 301–437. ISSN: 0065-2385.  https://doi.org/10.1002/9780470142851.ch5 Google Scholar
  39. 39.
    Pavlov GM (2016) Different levels of self-sufficiency of the velocity sedimentation method in the study of linear macromolecules. In: Uchiyama S, Arisaka F, Stafford WF, Laue T (eds) Analytical ultracentrifugation: instrumentation, software, and applications. Springer, Tokyo, pp 269–307.  https://doi.org/10.1007/978-4-431-55985-6_14ch.14CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt.-PetersburgRussia
  2. 2.Saint-Petersburg State UniversitySt.-PetersburgRussia
  3. 3.St. Petersburg State Technological Institute (Technical University)St.-PetersburgRussia

Personalised recommendations