An insight into the catalytic hydrogenation mechanism of modified dendrimer-loaded rhodium ionic catalyst for unsaturated copolymer

  • Wei Zhou
  • Xiaohong PengEmail author
Original Contribution


A catalytic mechanism of ionic rhodium catalyst stabilized by macrcycles-modified dendrimer (G2-M(Rh3+)) for the hydrogenation of unsaturated copolymer was proposed. It was found that the co-catalyst of triphenylphosphine (PPh3) possessed significant influence on the catalytic hydrogenation activity of G2-M(Rh3+). An active specie of [Rh(PPh3)3]+ could be generated from a ligand exchange between G2-M(Rh3+) and PPh3 during the hydrogenation process, which could outstandingly improve the selective hydrogenation activity for unsaturated co-polymers. Totally different from other catalyst for hydrogenation, the active [Rh(PPh3)3]+ was reduced to Rh0 nanoparticles which could be further recaptured by the non-coordinated macrocycles in G2-M after hydrogenation. The Rh0 recapture could significantly reduce Rh residues in the hydrogenated co-polymers. This research can give an insight into the interaction of dendrimer-loaded Rh and the co-catalyst of PPh3 during hydrogenation processs.

Graphical abstract

The Rh0, genarated from the reduction of [Rh(PPh3)3]+, can be recaptured by the non-coordinated macrocycles in G2-M after the hydrogenation. Thus, the Rh residues of HNBR and HSBR catalyzed by G2-M(Rh3+) decreased 81.1 wt% and 82.1 wt% compared with those of Rh(PPh3)3Cl. The Rh0 nanoparticle possesses weak interaction with PPh3 to generate active catalytic species for the hydrogenation in NBR and SBR, which reduced the catalytic activity of the recycled catalyst.


Catalytic hydrogenation; mechanism Rhodium catalyst Unsaturated co-polymer 


Funding information

This work was supported financially by the National Natural Science Foundation of China (Project No. 51273071).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Liu Y, Kim H, Pan QM, Rempel GL (2013) Hydrogenation of acrylonitrile–butadiene copolymer latex using water-soluble rhodium catalysts. Catal. Sci. Technol. 3:2689–2698CrossRefGoogle Scholar
  2. 2.
    Wang H, Yang LJ, Rempel GL (2013) Homogeneous hydrogenation art of nitrile butadiene rubber: A review. Polym. Rev. 53:192–239CrossRefGoogle Scholar
  3. 3.
    De SRF, Rech V (2002) Dupont. Alternative synthesis of a dialkylimidazolium tetrafluoroborate Ionic liquid mixture and its use in poly(acrylonitrile-butadiene) hydrogenation. J. Adv. Synth. Catal. 344:153–155CrossRefGoogle Scholar
  4. 4.
    Pan QM, Rempel GL (2004) Hydrogenation of styrene-butadiene rubber catalyzed by Ru(CH=CHPh)Cl(CO)(PCy3)2. Macromol. Rapid Commun. 25:843–847CrossRefGoogle Scholar
  5. 5.
    Mudalige DC, Rempel GL (1997) Aqueous-phase hydrogenation of polybutadiene, styrene-butadiene and nitrile-butadiene polymer emulsions catalyzed by water-soluble rhodium complexes. J. Mol. Catal. A-Chem. 123:15–20CrossRefGoogle Scholar
  6. 6.
    Ou HM, Wang Y, Zhou W, Peng XH (2016) Kinetics investigation on the hydrogenation of acrylonitrile-butadiene rubber latex by using new catalytic reaction system. Catal. Commun. 84:183–187CrossRefGoogle Scholar
  7. 7.
    Zou R, Li C, Zhang LQ (2016) Selective hydrogenation of nitrile butadiene rubber (NBR) with rhodium nanoparticles supported on carbon nanotubes at room temperature. Catal. Commun. 81:4–9CrossRefGoogle Scholar
  8. 8.
    Cao P, Ni YQ, Zou R, Zhang LQ, Yue DM (2015) Enhanced catalytic properties of rhodium nanoparticles deposited on chemically modified SiO2 for hydrogenation of nitrile butadiene rubber. RSC Adv. 5:3417–3424CrossRefGoogle Scholar
  9. 9.
    Dong LB, Turgman-Cohen S, Roberts GW, Kiserow DJ (2010) Effect of Polymer size on heterogeneous catalytic polystyrene hydrogenation. Ind. Eng. Chem. Res. 49:11280–11286CrossRefGoogle Scholar
  10. 10.
    Parent JS, McManus NT, Rempel GL (1996) RhCl(PPh3)3 and RhH(PPh3)4 catalyzed hydrogenation of acrylonitrile−butadiene copolymers. Ind. Eng. Chem. Res. 35:4417–4423CrossRefGoogle Scholar
  11. 11.
    Cao P, Huang CY, Zhang LQ, Yue DM (2015) One-step fabrication of RGO/HNBR composites via selective hydrogenation of NBR with graphene-based catalyst. RSC Adv. 5:41098–41102CrossRefGoogle Scholar
  12. 12.
    Wang H, Pan QM, Rempel GL (2012) Diene-based polymer nanoparticles: Preparation and direct catalytic latex hydrogenation. J. Polym Sci., Part A: Polym. Chem. 50:2098–2110CrossRefGoogle Scholar
  13. 13.
    Wang H, Yang LJ, Scott S, Pan QM, Rempel GL (2012) Organic solvent-free catalytic hydrogenation of diene-ased polymer nanoparticles in latex form. Part II. Kinetic analysis and mechanistic study. J. Polym Sci., Part A. Polym. Chem. 50:4612–4627CrossRefGoogle Scholar
  14. 14.
    Mao TF, Rempel GL (1998) Catalytic hydrogenation of nitrile-butadiene copolymers by cationic rhodium complexes. J. Mol. Catal. A-Chem. 135:121–132CrossRefGoogle Scholar
  15. 15.
    Collis AEC, Horvath IT (2011) Heterogenization of homogeneous catalytic systems. Catal. Sci. Technol. 1:912–919CrossRefGoogle Scholar
  16. 16.
    Liu Y, Wu JL, Pan QM, Rempel GL (2012) Green and simple method for catalytic hydrogenation of diene-based polymers. Top Catal. 55:637–643CrossRefGoogle Scholar
  17. 17.
    Liu Y, Wei ZL, Pan QM (2013) Hydrogenation of acrylonitrile-butadiene rubber latex using in situ synthesized RhCl(PPh3)3 catalyst. Appl. Catal. A-Gen. 457:62–68CrossRefGoogle Scholar
  18. 18.
    Yang LJ, Pan QM, Rempel GL (2013) Development of a green separation technique for recovery of Wilkinson's catalysts from bulk hydrogenated nitrile butadiene rubber. Catal. Today. 207:153–161CrossRefGoogle Scholar
  19. 19.
    Peng XH, Pan QM, Rempel GL (2008) Bimetallic dendrimer-encapsulated nanoparticles as catalysts: a review of the research advances. Chem. Soc. Rev. 37:1619–1628CrossRefGoogle Scholar
  20. 20.
    Lu X (2007) Tomalia. Size-Controlled in situ synthesis of metal nanoparticles on dendrimer-modified carbon nanotubes. J. Phys. Chem. C. 111:2416–2420Google Scholar
  21. 21.
    Drake MD, Bright FV, Detty MR (2003) Dendrimeric organochalcogen catalysts for the activation of hydrogen peroxide: Origins of the “Dendrimer Effect” with catalysts terminating in phenylseleno groups. J. Am. Chem. Soc. 125:12558–12566CrossRefGoogle Scholar
  22. 22.
    Kaufman EA, Tarallo R, Falanga A (2017) Generation effect of newkome dendrimers on cellular uptake. Polymer. 113:67–73CrossRefGoogle Scholar
  23. 23.
    Hosseini H, Mahyari M, Bagheri A (2014) Pd and PdCo alloy nanoparticles supported on polypropylenimine dendrimer-grafted graphene: A highly efficient anodic catalyst for direct formic acid fuel cells. J. Power Sources 247:70–77CrossRefGoogle Scholar
  24. 24.
    Sharma AS, Shah D, Kaur H (2015) Gold nanoparticles supported on dendrimer@resin for the efficient oxidation of styrene using elemental oxygen. RSC Adv. 5:42935–42941CrossRefGoogle Scholar
  25. 25.
    Scott RWJ, Datye AK, Crooks RM (2003) Bimetallic palladium-platinum dendrimer-encapsulated catalysts. J. Am. Chem. Soc. 125:3708–3711CrossRefGoogle Scholar
  26. 26.
    Astruc D, Boisselier E, Ornelas C (2010) Dendrimers designed for functions: From physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 110:1857–1959CrossRefGoogle Scholar
  27. 27.
    Badetti E, Caminade AM, Majoral JP, Moreno-Maas M, Sebastián RM (2008) Palladium(0) nanoparticles stabilized by phosphorus dendrimers containing coordinating 15-membered triolefinic macrocycles in periphery. Langmuir. 24:2090–2101CrossRefGoogle Scholar
  28. 28.
    Chung YM, Rhee HK (2004) Synthesis and catalytic applications of dendrimer-templated bimetallic nanoparticles. Catal. Surv. Asia. 8:211–223CrossRefGoogle Scholar
  29. 29.
    Hakim SH, Sener C, Albarubio AC (2015) Synthesis of supported bimetallic nanoparticles with controlled size and composition distributions for active site elucidation. J. Catal. 328:75–90CrossRefGoogle Scholar
  30. 30.
    Anna SM, Pleixats R (2010) Tsuji-Trost allylations with palladium recovery by phosphines/Pd(0)-triolefinic macrocyclic catalysts. J. Org. Chem. 695:1231–1236CrossRefGoogle Scholar
  31. 31.
    Llobet A, Masllorens E, Moreno-Maas M, Pla-Quintan A, Rodr′gueza M, Roglansa A (2002) Synthesis, catalytic activity and redox properties of palladium(0) complexes with 15-membered triolefinic macrocyclic ligands containing one, two or three ferrocenyl groups. Tetrahedron Lett. 43:1425–1428CrossRefGoogle Scholar
  32. 32.
    Pla-Quintana A, Roglans A, Vicente DOJ, Moreno-Maas M, Parella T, Benet-Buchholz J, Solans X (2005) Structural analysis of chiral complexes of palladium(0) with 15-membered triolefinic macrocyclic ligands. Chem. Eur. J. 11:2689–2697CrossRefGoogle Scholar
  33. 33.
    Zhou W, Yi JM, Lin JW, Fang SF, Peng XH (2016) Preparation of facile separable homogeneous Rhodium catalyst and its application for the catalytic hydrogenation of nitrile butadiene rubber and styrene-butadiene rubber. Res. Chem. Intermediat. 43:1–12Google Scholar
  34. 34.
    Zhou W, Peng XH (2016) Preparation of a novel homogeneous bimetallic Rhodium/Palladium ionic catalyst and its application for the catalytic hydrogenation of nitrile butadiene rubber. J. Organomet. Chem. 823:76–82CrossRefGoogle Scholar
  35. 35.
    Moreno-Maas M, Pleixats R, Sebastián RM, Vallribera A, Roglans A (2004) Organometallic chemistry of 15-membered tri-olefinic macrocycles: catalysis by palladium(0) complexes in carbon–carbon bond-forming reactions. J. Organomet. Chem. 689:3669–3684CrossRefGoogle Scholar
  36. 36.
    Moreno-Manas M, Pleixats R, Spengler J, Chevrin C, Estrine B, Bouquillon S, Henin F, Muzart J, Pla-Quintana A, Roglans A (2003) 15-membered triolefinic macrocycles -catalytic role of (E,E,E)-1,6,11-tris(arenesulfonyl)-1,6,11-triazacyclopentadeca-3,8,13-triene complexes of palladium(0) in the presence of phosphanes. Eur. J. Org. Chem. 2:274–283CrossRefGoogle Scholar
  37. 37.
    Zhou W, Zhang DQ, Wang Y, Peng XH (2017) Preparation of Rh metallic nanoparticle stabilized by 15-membered nitrogen-containing triolefinic macrocycle-ended poly(propylene imine) dendrimer and its catalytic hydrogenation for nitrile-butadiene rubber. Colloid Polym. Sci. 295:1–6CrossRefGoogle Scholar
  38. 38.
    Mohammadi NA, Rempel GL (1987) Homogeneous selective catalytic hydrogenation of C=C in acrylonitrile-butadiene copolymer. Macromolecules. 20:2362–2368CrossRefGoogle Scholar
  39. 39.
    Filippo M, Antonella R, Nicholas DS (2011) Chemical reactivity of triphenyl phosphorothionate (TPPT) with iron: An ATR/FT-IR and XPS investigation. J. Phys. Chem. C. 115:1339–1354CrossRefGoogle Scholar
  40. 40.
    Pan QM, Rempel GL (2000) Numerical investigation of semibatch processes for hydrogenation of diene-based polymers. Ind. Eng. Chem. Res. 39:277–284CrossRefGoogle Scholar
  41. 41.
    Bhalchandra AK, Suman S, Shivappa B, Halligudi K, Vijayamohanan P (2008) Highly selective catalytic hydrogenation of arenes using rhodium nanoparticles supported on multiwalled carbon nanotubes. J. Phys. Chem. C. 112:13317–13319CrossRefGoogle Scholar
  42. 42.
    Erika V, Peter P, Albert O, Kornelia B, Andras E, Zoltan K, Janos K (2016) Stability and temperature-induced agglomeration of Rh nanoparticles supported by CeO2. Langmuir. 32:2761–2770CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistrySun Yat-Sen UniversityGuangzhouChina
  2. 2.Department of Materials Science and EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations