Advertisement

Colloid and Polymer Science

, Volume 297, Issue 7–8, pp 979–987 | Cite as

Size, orientation, and strength of Na-montmorillonite flocs flowing in a laminar shear flow

  • Yasuhisa AdachiEmail author
  • Chuan Di
  • Feng Xiao
  • Motoyoshi Kobayashi
Original Contribution
  • 43 Downloads

Abstract

The flowing behavior of montmorillonite flocs coagulated in NaCl solution was visualized using a device called Couette chamber which was designed to analyze the strength of floc against breakup in a laminar shear flow generated in the gap between two concentric cylinders. The rotation ax of cylinders was oriented horizontally to avoid the effect of sedimentation during measurement. Observation of the morphology of flowing flocs was performed with a high-speed camera under sufficiently high salt concentration to induce rapid coagulation of montmorillonite as a function of shear rate. The recorded image of flocs demonstrated that the average flowing flocs is approximated by an ellipsoid of equivalent inertial moment with a length ratio of two principal axes being around 2. The most probable orientation of the major axis was found to be the flow direction. Assuming flocs are ellipsoids and will be disrupted by the effect of extensional component of the flow field, the cohesive strength supporting the disintegrating clusters was calculated on the basis of the simple model of floc strength proposed previously for the breakup of a floc under turbulent flow. The tendency of structural enforcement by the rearrangement of internal clusters was recorded with an increase in size of floc irrespective of ionic strength. In addition, the enforcement of cohesive strength by the effect of dehydration of proximately adsorbed sodium ions at extremely high ionic strength was confirmed.

Graphical abstract

Keywords

Morphology of flocs Orientation Floc strength Na-montmorillonite Laminar shear flow Hydration force 

Notes

Acknowledgments

We thank the Research Facility Center for Science and Technology of the University of Tsukuba for manufacturing the Couette chamber.

Funding information

This research was supported by JSPS Kakenhi 16H06382.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Tambo N, Watanabe Y (1979) Physical characteristics of flocs—I. The floc density function and aluminium floc. Water Res 13(5):409–419.  https://doi.org/10.1016/0043-1354(79)90033-2 CrossRefGoogle Scholar
  2. 2.
    Parker DS, Kaufman WJ, Jenkins D (1972) Floc breakup in turbulent flocculation processes. J Sanit Eng Div Proc Am Soc Civ Eng SA1:79–99Google Scholar
  3. 3.
    Jarvis P, Jefferson B, Gregory J, Parsons SA (2005) A review of floc strength and breakage. Water Res 39:3121–3137.  https://doi.org/10.1016/j.watres.2005.05.022 CrossRefGoogle Scholar
  4. 4.
    Johan C. Winterwerp Walther G. M. van Kesteren (2004) Introduction to the physics of cohesive sediment dynamics in the marine environment (Developments in Sedimentology Book 56) ElsevierGoogle Scholar
  5. 5.
    Maggi F, Mietta F, Winterwerp JC (2007) Effect of variable fractal dimension on the floc size distribution of suspended cohesive sediment. J Hydrol 343(1–2):43–55.  https://doi.org/10.1016/j.jhydrol.2007.05.035 CrossRefGoogle Scholar
  6. 6.
    Adachi Y, Ooi S (1990) Geometrical structure of a floc. Colloids Interface Sci 135:374–384.  https://doi.org/10.1016/0021-9797(90)90007-B CrossRefGoogle Scholar
  7. 7.
    Thomas DN, Judd SJ, Fawcett N (1999) Flocculation modeling: a review. Water Res 33(7):1579–1592.  https://doi.org/10.1016/S0043-1354(98)00392-3 CrossRefGoogle Scholar
  8. 8.
    Tambo N, Hozumi H (1979) Physical characteristics of flocs-II. Strength of floc. Water Res 13(5):421–427.  https://doi.org/10.1016/0043-1354(79)90034-4 CrossRefGoogle Scholar
  9. 9.
    Kobayashi M, Adachi Y, Ooi S (1999) Breakup of fractal flocs in a turbulent flow. Langmuir 15:4351–4356.  https://doi.org/10.1021/la980763o CrossRefGoogle Scholar
  10. 10.
    Ehrl L, Soos M, Morbidelli M (2008) Dependence of aggregate strength, structure, and light scattering properties on primary particles size under turbulent conditions in stirred tank. Langmuir 24:3070–3081.  https://doi.org/10.1021/la7032302 CrossRefGoogle Scholar
  11. 11.
    Soos M, Moussa AS, Ehrl L, Sefcik J, Wu H, Morbidelli M (2008) Effect of shear rate on aggregate size and morphology investigated under turbulent conditions in stirred tank. J Colloid Interface Sci 319(2):577–589.  https://doi.org/10.1016/j.jcis.2007.12.005 CrossRefGoogle Scholar
  12. 12.
    Miyahara K, Adachi Y, Nakaishi K, Ohtsubo M (2002) Settling velocity of a sodium montmorillonite floc under high ionic strength. Colloids Surf A Physicochem Eng Asp 196(1):87–91.  https://doi.org/10.1016/S0927-7757(01)00798-1 CrossRefGoogle Scholar
  13. 13.
    Miyahara K, Adachi Y, Nakaishi K (1996) The viscosity of a dilute suspension of sodium montmorillonite in an alkaline state. Colloids Surf:A69–A75.  https://doi.org/10.1016/S0927-7757(96)03961-1
  14. 14.
    Watanabe Y (2017) Flocculation and me. Water Res 114:88–103.  https://doi.org/10.1016/j.watres.2016.12.035 CrossRefGoogle Scholar
  15. 15.
    Kao SV, Mason SG (1975) Dispersion of particles by shear. Nature 253:619–621CrossRefGoogle Scholar
  16. 16.
    Sonntag RC, Russel WB (1978) Structure and breakup of flocs subjected to fluid stresses: I. Shear experiments. J Colloid Interface Sci 113:399–413.  https://doi.org/10.1016/0021-9797(86)90175-X CrossRefGoogle Scholar
  17. 17.
    Sonntag RC, Russel WB (1987) Structure and breakup of flocs subjected to fluid stresses: II Theory. J Colloid Interface Sci 115(2):378–389.  https://doi.org/10.1016/0021-9797(87)90053-1 CrossRefGoogle Scholar
  18. 18.
    Sonntag RC, Russel WB (1978) Structure and breakup of flocs subjected to fluid stresses. III. Converging flow. J Colloid Interface Sci 115:390–395.  https://doi.org/10.1016/0021-9797(87)90054-3 CrossRefGoogle Scholar
  19. 19.
    Derjaguin BV, Landau LD (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes. Acta Physicochim U R S S 14:633–662.  https://doi.org/10.1016/0079-6816(93)90013-L Google Scholar
  20. 20.
    Verwery EJW, Overbeek JTG (1947) Theory of the stability of lyophobic colloids. J Phys Chem 51(3):631–636.  https://doi.org/10.1021/j150453a001 CrossRefGoogle Scholar
  21. 21.
    Higashitani K, Inada N, Ochi T (1991) Floc breakup along centerline of contractile flow to orifice. Colloids Surf A Physicochem Eng Asp 56:13–23.  https://doi.org/10.1016/0166-6622(91)80111-Z Google Scholar
  22. 22.
    Yeung AKC, Pelton R (1996) Micromechanics: a new approach to studying the strength and breakup of flocs. J Colloid Interface Sci 184(2):579–585.  https://doi.org/10.1006/jcis.1996.0654 CrossRefGoogle Scholar
  23. 23.
    Doi M, Chen D (1989) Simulationof aggregating colloids in shear flow. J Chem Phys 90:5271–5279.  https://doi.org/10.1063/1.456430 CrossRefGoogle Scholar
  24. 24.
    Higashitani K, Iimura K, Sanda H (2001) Simulation of deformation and breakup of large aggregates in flows of viscous fluids. Chem Eng Sci 56(9):2927–2938.  https://doi.org/10.1016/S0009-2509(00)00477-2 CrossRefGoogle Scholar
  25. 25.
    Blaser S (2000) Flocs in shear and strain flows. J Colloid Interface Sci 225(2):273–284.  https://doi.org/10.1006/jcis.1999.6671 CrossRefGoogle Scholar
  26. 26.
    Blaser S (2002) Forces on the surface of small ellipsoidal particles immersed in a linear flow field. Chem Eng Sci 57(3):515–526.  https://doi.org/10.1016/S0009-2509(01)00389-X CrossRefGoogle Scholar
  27. 27.
    Kobayashi M (2004) Breakup and strength of polystyrene latex, flocs subjected to a converging flow. Colloids Surf A Physicochem Eng Asp 235(1–3):73–78.  https://doi.org/10.1016/j.colsurfa.2004.01.008 CrossRefGoogle Scholar
  28. 28.
    Kobayashi M (2005) Strength of natural soil flocs. Water Res 39(14):3273–3278.  https://doi.org/10.1016/j.watres.2005.05.037 CrossRefGoogle Scholar
  29. 29.
    Frappier G, Lartiges BS, Skali-Lami S (2010) Floc cohesive force in reversible aggregation: a Couette laminar flow investigation. Langmuir 26(13):10475–10488.  https://doi.org/10.1021/la9046947 CrossRefGoogle Scholar
  30. 30.
    Zhu Z, Wang H, Yu J, Dou J, Wang C (2015) Fractal dimensions of cohesive sediment flocs at steady state under seven shear flow conditions. Water 7(8):4385–4408.  https://doi.org/10.3390/w7084385 CrossRefGoogle Scholar
  31. 31.
    Zhu Z, Peng D, Dou J (2017) Changes in the two-dimensional and perimeter-based fractal dimensions of kaolinite flocs during flocculation: a simple experimental study. Water Sci Technol 77(4):861–870.  https://doi.org/10.2166/wst.2017.603 CrossRefGoogle Scholar
  32. 32.
    Léa G, Christ F, Alain L, Carole C-S (2019) Fractal dimensions and morphological characteristics of aggregates formed indifferent physico-chemical and mechanical flocculation environments. Colloids Surf A 560(5):213–222.  https://doi.org/10.1016/j.colsurfa.2018.10.017 Google Scholar
  33. 33.
    Bubakova P, Pivokonsky M, Filip P (2013) Effect of shear rate on aggregate size and structure in the process of aggregation and at steady state. Powder Technol 235:540–549.  https://doi.org/10.1016/j.powtec.2012.11.014 CrossRefGoogle Scholar
  34. 34.
    Guérin L, Coufort-Saudejaud C, Liné A, Christ F (2017) Dynamics of aggregate size and shape properties under sequenced flocculation in a turbulent Taylor-Couette reactor. J Colloid Interface Sci 491(1):167–178.  https://doi.org/10.1016/j.jcis.2016.12.042 CrossRefGoogle Scholar
  35. 35.
    Sutherland DN, Goodarznia I (1971) Floc simulation: effect of collision sequence. Chem Eng Sci 26(12):2071–2085.  https://doi.org/10.1016/0009-2509(71)80045-3 CrossRefGoogle Scholar
  36. 36.
    Hyunseop L, Chongyoup K (2018) Experimental study on reversible formation of 2D flocs from plate-like particles dispersed in Newtonian fluid under torsional flow. Colloids Surf A 548(5):70–84.  https://doi.org/10.1016/j.colsurfa.2018.03.043 Google Scholar
  37. 37.
    Spicer PT, Pratsinis SE (1996) Coagulation and fragmentation: universal steady state particle size distribution. AICHE J 42(6):1616–1620.  https://doi.org/10.1002/aic.690420612 CrossRefGoogle Scholar
  38. 38.
    Biggs C, Lant P (2000) Activated sludge flocculation: on-line determination of floc size and the effect of shear. Water Res 34:2542–2550.  https://doi.org/10.1016/S0043-1354(99)00431-5 CrossRefGoogle Scholar
  39. 39.
    Miyahara K, Ooi S, Nakaishi K, Kobayashi M, Adachi Y (2004) Capillary diameter effects on the apparent viscosity of the suspension of clay flocs. Nihon Reoroji Gakkaishi 32:277–284CrossRefGoogle Scholar
  40. 40.
    Meakin P, Jullien R (1988) The effects of restructuring on the geometry of clusters formed by diffusion-limited, ballistic, and reaction-limited cluster-cluster aggregation. J Chem Phys 89(1):246–250.  https://doi.org/10.1063/1.455517 CrossRefGoogle Scholar
  41. 41.
    Adachi Y, Kobayashi M, Ooi S (1998) Applicability of fractals to the analysis of the projection of small flocs. J Colloid Interface Sci 208:353–355.  https://doi.org/10.1006/jcis.1998.5839 CrossRefGoogle Scholar
  42. 42.
    Boström M, Williams DRM, Ninham BW (2001) Specific ion effects: why DLVO theory fails for biology and colloid systems. Phys Rev Lett 87(16):168103-(1-4).  https://doi.org/10.1103/PhysRevLett.87.168103 CrossRefGoogle Scholar
  43. 43.
    Pashley RM (1981) DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+ electrolyte solutions: a correlation of double-layer and hydration forces with surface cation exchange properties. J Colloid Interface Sci 83(2):531–546.  https://doi.org/10.1016/0021-9797(81)90348-9 CrossRefGoogle Scholar
  44. 44.
    Higashitani K, Nakamura K, Shimamura T, Fukasawa T, Tsuchiya K, Mori Y (2017) Orders of magnitude reduction of rapid coagulation rate with decreasing size of silica nanoparticles. Langmuir 33:5046–5051.  https://doi.org/10.1021/acs.langmuir.7b00932 CrossRefGoogle Scholar
  45. 45.
    Kobayashi M, Juillerat F, Galletto P, Bowen P, Borkovec M (2005) Aggregation and charging of colloidal silica particles: effect of particle size. Langmuir 21:5761–5769.  https://doi.org/10.1021/la046829z CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yasuhisa Adachi
    • 1
    Email author
  • Chuan Di
    • 1
  • Feng Xiao
    • 2
    • 3
  • Motoyoshi Kobayashi
    • 1
  1. 1.Graduate School of Life and Environmental scienceUniversity of TsukubaTsukuba CityJapan
  2. 2.State Key Laboratory of Environmental Aquatic ChemistryResearch Center for Eco-Environmental ScienceBeijingChina
  3. 3.School of Renewable Energy, North China Electric Power UniversityBeijingChina

Personalised recommendations