Creep and solvent squeeze behavior of κ-carrageenan gels under compression

  • Takuma Tanigawa
  • Koichi Yao
  • Ryosuke Shimizu
  • Jun-ichi Horinaka
  • Toshikazu TakigawaEmail author
Original Contribution


Creep by solvent squeeze of cylindrical κ-carrageenan gels is investigated. A phenomenological model to describe the creep and the solvent squeeze of polymer gels is also presented. Under compression, the creep of gels proceeds at a constant diameter except for the initial stage of creep. The change in height of the gels is well reproduced by the sum of three exponential terms, each of which is specified by the combination of displacement and retardation time. The displacement for the second mode, which corresponds to the second longest retardation time, becomes largest for all gel specimens. Three retardation times are commonly proportional to the square of initial diameter of gel specimens. Based on the proposed model, the spring constant in the second mode becomes smallest and the permeability corresponding to the third mode becomes larger than those in the other two modes.


Solvent squeeze Creep κ-Carrageenan gel Mechanical model for creep and solvent squeeze 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Burchard W, Ross-Murphy SB (1990) Physical networks-polymers and gels. Elsevier, LondonGoogle Scholar
  2. 2.
    DeRossi D, Kajiwara K, Osada Y, Yamauchi A (1991) Polymer gels-fundamentals and biomedical applications. Plenum, New YorkGoogle Scholar
  3. 3.
    Wichter O, Lim D (1960). Nature 185:117CrossRefGoogle Scholar
  4. 4.
    Hill TL (1986) An introduction to statistical thermodynamics. Dover, New YorkGoogle Scholar
  5. 5.
    Treloar LRG (1975) The physics of rubber elasticity. Clarendon Press, OxfordGoogle Scholar
  6. 6.
    Urayama K, Takigawa T (2012). Soft Matter 8:8017CrossRefGoogle Scholar
  7. 7.
    Takigawa T, Urayama K, Masuda T (1994). Poly Gels Networks 2:59CrossRefGoogle Scholar
  8. 8.
    Nakamura K, Shinoda E, Tokita M (2001). Food Hydrocoll 15:247CrossRefGoogle Scholar
  9. 9.
    Yao K, Horinaka J, Takigawa T (2019) Nihon Reoroji Gakkaishi (J Soc Rheol Jpn) 47:25Google Scholar
  10. 10.
    Kaneda I, Iwasaki S (2015). Rheol Acta 54:437–443CrossRefGoogle Scholar
  11. 11.
    Kaneda I (2018). Gels 4:23CrossRefGoogle Scholar
  12. 12.
    Yao K, Horinaka J, Takigawa T (2019) Nihon Reoroji Gakkaishi (J Soc Rheol Jpn) 46:233Google Scholar
  13. 13.
    Morris VJ, Gunning AP, Kirby AR, Mackie AR, Wilde PJ (2000) In: Nishinari K (ed) In hydrocolloids-part 1. Elsevier, Amsterdam, p 99CrossRefGoogle Scholar
  14. 14.
    Shaw MT, MacKnight WJ (2005) Introduction to polymer viscoelasticity. Wiley, HobokenCrossRefGoogle Scholar
  15. 15.
    Shimizu R, Horinaka J, Takigawa T (2018). Colloid Polym Sci 296:233CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
corrected publication 2019

Authors and Affiliations

  • Takuma Tanigawa
    • 1
  • Koichi Yao
    • 1
  • Ryosuke Shimizu
    • 1
  • Jun-ichi Horinaka
    • 1
  • Toshikazu Takigawa
    • 1
    Email author
  1. 1.Department of Material ChemistryKyoto UniversityKyotoJapan

Personalised recommendations