Macroporous titania monoliths from emulsion templated composites

  • Amadeja Koler
  • Peter KrajncEmail author
Original Contribution


High internal phase emulsion (HIPE) templating approach, well known for the preparation of macroporous polymeric monoliths (polyHIPEs), was utilized for the synthesis of macroporous cellular interconnected titania ceramic monoliths. In order to derive the ceramic monolithic material from the precursor polymer, titania particles were introduced into the monomer containing emulsion phase. The morphology of the final ceramic monolith closely resembled the precursor polymer composite, featuring a 3D interconnected cellular structure with the first level of pores with an average diameter of 70–100 μm and channels connecting the first level of pores. Multifunctional acrylate monomer was used in a combination with photopolymerization for the preparation of composite polyacrylate/titania monolith. The ratio of particles to monomer and the temperature profile of sintering were the most important factors affecting the morphology of the final material. A significant increase in the modulus of the sintered material compared to the porous composite precursors was found.

Graphical abstract


Porous ceramics polyHIPE Porous composite Titania 



The authors are grateful to Dr. Thomas Koch from Vienna University of Technology for nanoindentation measurements.

Funding information

Slovenian Research Agency funded this research through grant P2-006 and provided scholarship to A.K.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Scheffler M, Colombo P (2005) Structure, manufacturing , properties and applications. Wiley-VCH Verlag GmbH&Co. KGaA, WeinheimCrossRefGoogle Scholar
  2. 2.
    Ohji T, Fukushima M (2012) Macro-porous ceramics: processing and properties. Int Mater Rev 57:115–131. CrossRefGoogle Scholar
  3. 3.
    Brown DD, Green DJ (1994) Investigation of strut crack formation in open cell alumina ceramics. J Am Ceram Soc 77:1467–1472. CrossRefGoogle Scholar
  4. 4.
    Biasetto L, Colombo P, Innocentini MDM, Mullens S (2007) Gas permeability of microcellular ceramic foams. Ind Eng Chem Res 46:3366–3372. CrossRefGoogle Scholar
  5. 5.
    Santa Cruz H, Spino J, Grathwohl G (2008) Nanocrystalline ZrO2 ceramics with idealized macropores. J Eur Ceram Soc 28:1783–1791. CrossRefGoogle Scholar
  6. 6.
    Shibuya M, Takahashi T, Koyama K (2007) Microcellular ceramics by using silicone preceramic polymer and PMMA polymer sacrificial microbeads. Compos Sci Technol 67:119–124. CrossRefGoogle Scholar
  7. 7.
    Ding S, Zeng Y-P, Jiang D (2007) Oxidation bonding of porous silicon nitride ceramics with high strength and low dielectric constant. Mater Lett 61:2277–2280. CrossRefGoogle Scholar
  8. 8.
    Gaydardzhiev S, Gusovius H, Wilker V, Ay P (2008) Gel-casted porous Al2O3 ceramics by use of natural fibres as pore developers. J Porous Mater 15:475–480. CrossRefGoogle Scholar
  9. 9.
    Vakifahmetoglu C, Zeydanli D, Colombo P (2016) Porous polymer derived ceramics. Mater Sci Eng R Rep 106:1–30. CrossRefGoogle Scholar
  10. 10.
    Kumar BVM, Kim YW (2010) Processing of polysiloxane-derived porous ceramics: a review. Sci Technol Adv Mater 11:044303. CrossRefGoogle Scholar
  11. 11.
    Ceron-Nicolat B, Fey T, Greil P (2010) Processing of ceramic foams with hierarchical cell structure. Adv Eng Mater 12:884–892. CrossRefGoogle Scholar
  12. 12.
    Pan JM, Yan XH, Cheng XN, Lu QB, Wang MS, Zhang CH (2012) Preparation of SiC nanowires-filled cellular SiCO ceramics from polymeric precursor. Ceram Int 38:6823–6829. CrossRefGoogle Scholar
  13. 13.
    Jones BH, Lodge TP (2009) High-temperature nanoporous ceramic monolith prepared from a polymeric bicontinuous microemulsion template. J Am Chem Soc 131:1676–1677. CrossRefGoogle Scholar
  14. 14.
    Shi Y, Meng Y, Chen D et al (2006) Highly ordered mesoporous silicon carbide ceramics with large surface areas and high stability. Adv Funct Mater 16:561–567. CrossRefGoogle Scholar
  15. 15.
    Zhao D, Feng J, Huo Q et al (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 80(279):548–552. CrossRefGoogle Scholar
  16. 16.
    Alauzun JG, Ungureanu S, Brun N, Bernard S, Miele P, Backov R, Sanchez C (2011) Novel monolith-type boron nitride hierarchical foams obtained through integrative chemistry. J Mater Chem 21:14025–14030. CrossRefGoogle Scholar
  17. 17.
    Carn F, Colin A, Achard M-F, Deleuze H, Sellier E, Birot M, Backov R (2004) Inorganic monoliths hierarchically textured via concentrated direct emulsion and micellar templates. J Mater Chem 14:1370–1376. CrossRefGoogle Scholar
  18. 18.
    Pulko I, Krajnc P (2017) Porous polymer monoliths by emulsion templating. Encycl Polym Sci Technol:1–28.
  19. 19.
    Pulko I, Krajnc P (2012) High internal phase emulsion templating--a path to hierarchically porous functional polymers. Macromol Rapid Commun 33:1731–1746. CrossRefGoogle Scholar
  20. 20.
    Silverstein MS, Tai H, Sergienko A, Lumelsky Y, Pavlovsky S (2005) PolyHIPE: IPNs, hybrids, nanoscale porosity, silica monoliths and ICP-based sensors. Polymer, vol 46, pp 6682–6694Google Scholar
  21. 21.
    Normatov J, Silverstein MS (2007) Silsesquioxane-cross-linked porous nanocomposites synthesized within high internal phase emulsions. Macromolecules 40:8329–8335. CrossRefGoogle Scholar
  22. 22.
    Normatov J, Silverstein MS (2007) Porous interpenetrating network hybrids synthesized within high internal phase emulsions. Polymer (Guildf) 48:6648–6655. CrossRefGoogle Scholar
  23. 23.
    Haibach K, Menner A, Powell R, Bismarck A (2006) Tailoring mechanical properties of highly porous polymer foams: silica particle reinforced polymer foams via emulsion templating. Polymer (Guildf) 47:4513–4519. CrossRefGoogle Scholar
  24. 24.
    Maekawa H, Esquena J, Bishop S, Solans C, Chmelka BF (2003) Meso/macroporous inorganic oxide monoliths from polymer foams. Adv Mater 15:591–596. CrossRefGoogle Scholar
  25. 25.
    Schlüter F, Meyer J, Wilhelm M, Rezwan K (2016) Hierarchical emulsion based hybrid ceramics synthesized with different siloxane precursor and with embedded nickel nanoparticles. Colloids Surf A Physicochem Eng Asp 492:160–169. CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Liang H, Zhao CY, Liu Y (2009) Macroporous alumina monoliths prepared by filling polymer foams with alumina hydrosols. J Mater Sci 44:931–938. CrossRefGoogle Scholar
  27. 27.
    Kovačič S, Anžlovar A, Erjavec B, Kapun G, Matsko NB, Žigon M, Žagar E, Pintar A, Slugovc C (2014) Macroporous ZnO foams by high internal phase emulsion technique: synthesis and catalytic activity. ACS Appl Mater Interfaces 6:19075–19081. CrossRefGoogle Scholar
  28. 28.
    Li Z, Wei X, Ming T, Wang J, Ngai T (2010) Dual templating synthesis of hierarchical porous silica materials with three orders of length scale. Chem Commun 46:8767. CrossRefGoogle Scholar
  29. 29.
    Li X, Sun G, Li Y, Yu JC, Wu J, Ma GH, Ngai T (2014) Porous TiO2 materials through pickering high-internal phase emulsion templating. Langmuir 30:2676–2683. CrossRefGoogle Scholar
  30. 30.
    Yüce E, Mert EH, Krajnc P, Parın FN, San N, Kaya D, Yıldırım H (2017) Photocatalytic activity of titania/polydicyclopentadiene polyHIPE composites. Macromol Mater Eng 302:1700091. CrossRefGoogle Scholar
  31. 31.
    Turnšek M, Krajnc P, Liska R, Koch T (2016) Macroporous alumina with cellular interconnected morphology from emulsion templated polymer composite precursors. J Eur Ceram Soc 36:1045–1051. CrossRefGoogle Scholar
  32. 32.
    Sušec M, Ligon SC, Stampfl J, Liska R, Krajnc P (2013) Hierarchically porous materials from layer-by-layer photopolymerization of high internal phase emulsions. Macromol Rapid Commun 34:938–943. CrossRefGoogle Scholar
  33. 33.
    Carnachan RJ, Bokhari M, Przyborski SA, Cameron NR (2006) Tailoring the morphology of emulsion-templated porous polymers. Soft Matter 2:608–616. CrossRefGoogle Scholar
  34. 34.
    Mautner A, Qin X, Kapeller B, Russmueller G, Koch T, Stampfl J, Liska R (2012) Efficient curing of vinyl carbonates by thiol-ene polymerization. Macromol Rapid Commun 33:2046–2052. CrossRefGoogle Scholar
  35. 35.
    Pickering SU (1907) Emulsions. J Chem Soc Trans 91:2001–2021CrossRefGoogle Scholar
  36. 36.
    Gurevitch I, Silverstein MS (2010) Polymerized pickering HIPEs: effects of synthesis parameters on porous structure. J Polym Sci A Polym Chem 48:1516–1525. CrossRefGoogle Scholar
  37. 37.
    Ikem VO, Menner A, Bismarck A (2008) High internal phase emulsions stabilized solely by functionalized silica particles. Angew Chem Int Ed 47:8277–8279. CrossRefGoogle Scholar
  38. 38.
    Ikem VO, Menner A, Bismarck A (2010) High-porosity macroporous polymers sythesized from titania-particle- stabilized medium and high internal phase emulsions. Langmuir 26:8836–8841. CrossRefGoogle Scholar
  39. 39.
    Ikem VO, Menner A, Horozov TS, Bismarck A (2010) Highly permeable macroporous polymers synthesized from pickering medium and high internal phase emulsion templates. Adv Mater 22:3588–3592. CrossRefGoogle Scholar
  40. 40.
    Kovačič S, Ferk G, Drofenik M, Krajnc P (2012) Nanocomposite polyHIPEs with magnetic nanoparticles: preparation and heating effect. React Funct Polym 72:955–961. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Chemistry and Chemical Engineering, PolyOrgLabUniversity of MariborMariborSlovenia

Personalised recommendations