Advertisement

Effect of functionalization on the properties of silsesquioxane: a comparison to silica

  • Marzieh Moradi
  • Bailey M. Woods
  • Hemali Rathnayake
  • Stuart J. Williams
  • Gerold A. WillingEmail author
Original Contribution
  • 69 Downloads

Abstract

While similar in nature, the properties of silica and silsesquioxane are very different, but little is known about these differences. In this paper, functionalized silsesquioxane microparticles are synthesized by adapting the modified Stöber method and post-functionalized with rhodamine B. The as-synthesized silsesquioxane particles are characterized by a variety of physical and chemical methods. The synthesized particles are amorphous and nonporous in nature and are less dense than silica. While silsesquioxane and silica have some similar physical properties from their siloxane core, the organic functional group of silsesquioxane and the one-half oxygen difference in its structure impact many other properties of these particles like their charging behavior in liquids. These differences not only allow for the ease of surface modification as compared to that necessary to modify silica but also allow for the use in a variety of colloidal systems that due to pH or electrolyte concentrations may not be suitable for silica particles.

Keywords

Silsesquioxane Stöber method Density Morphology Zeta potential 

Notes

Funding information

This work was financially supported by a grant from the NASA EPSCoR (Grant No. NNX14AN28A).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Martinez CJ, Liu J, Rhodes SK, Luijten E, Weeks ER, Lewis JA (2005) Interparticle interactions and direct imaging of colloidal phases assembled from microsphere-nanoparticle mixtures. Langmuir 21(22):9978–9989.  https://doi.org/10.1021/la050382s CrossRefGoogle Scholar
  2. 2.
    Hong X, Willing GA (2009) Transition force measurement between two negligibly charged surfaces: a new perspective on nanoparticle halos. Langmuir 25(9):4929–4933.  https://doi.org/10.1021/la804103g CrossRefGoogle Scholar
  3. 3.
    Martinez CJ, Lewis JA (2002) Shape evolution and stress development during latex−silica film formation. Langmuir 18(12):4689–4698.  https://doi.org/10.1021/la0114833 CrossRefGoogle Scholar
  4. 4.
    Lewis JA (2000) Colloidal processing of ceramics. J Am Ceram Soc 83(10):2341–2359.  https://doi.org/10.1111/j.1151-2916.2000.tb01560.x CrossRefGoogle Scholar
  5. 5.
    Joannopoulos JD, Villeneuve PR, Fan S (1997) Photonic crystals: putting a new twist on light. Nature 386(6621):143–149.  https://doi.org/10.1038/386143a0 CrossRefGoogle Scholar
  6. 6.
    Muller RH (1991) Colloidal carriers for controlled drug delivery and targeting: modification, characterization, and in vivo distribution. CRC Press, Boca Raton, FLGoogle Scholar
  7. 7.
    Neerudu N, McNamara L, Hammer NI, Rathnayake H (2017) A versatile synthesis to novel binary reactive groups functionalized silsesquioxane microparticles. Sci Adv Today 3:25266Google Scholar
  8. 8.
    Hunter RJ (1988) Zeta potential in colloid science: principles and applications. Academic Press Inc, San Diego, CA, p 92101Google Scholar
  9. 9.
    He Q (2014) Investigation of stabilization mechanisms for colloidal suspension using nanoparticles. Dissertation, University of Louisville,Google Scholar
  10. 10.
    Tadros T (2013) Encyclopedia of colloid and interface science. Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-642-20665-8 CrossRefGoogle Scholar
  11. 11.
    Provatas A, Matisons JG (1997) Silsesquioxanes: synthesis and applications. Trends Polym Sci 5(10):327–332Google Scholar
  12. 12.
    Feher FJ, Walzer JF (1991) Synthesis and characterization of vanadium-containing silsesquioxanes. Inorg Chem 30(8):1689–1694.  https://doi.org/10.1021/ic00008a005 CrossRefGoogle Scholar
  13. 13.
    Li GZ, Wang LC, Ni HL, Pittman CU (2001) Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: a review. J Inorg Organomet Polym 11(3):123–154.  https://doi.org/10.1023/A:1015287910502 CrossRefGoogle Scholar
  14. 14.
    Eisenberg P, Erra-Balsells R, Ishikawa Y, Lucas JC, Mauri AN, Nonami H, Riccardi CC, Williams RJJ (2000) Cagelike precursors of high-molar-mass silsesquioxanes formed by the hydrolytic condensation of trialkoxysilanes. Macromolecules 33(6):1940–1947.  https://doi.org/10.1021/ma9912507 CrossRefGoogle Scholar
  15. 15.
    Gravel MC, Laine RM (1997) Synthesis and characterization of a new amino-functionalized silsesquioxane. Abstr Pap Am Chem S 38(2):155–156Google Scholar
  16. 16.
    Bronstein LM, Linton CN, Karlinsey R, Ashcraft E, Stein BD, Svergun DI, Kozin M, Khotina IA, Spontak RJ, Werner-Zwanziger U, Zwanziger JW (2003) Controlled synthesis of novel metalated poly (aminohexyl)-(aminopropyl)silsesquioxane colloids. Langmuir 19(17):7071–7083.  https://doi.org/10.1021/la034291b CrossRefGoogle Scholar
  17. 17.
    Feher FJ, Budzichowski TA (1995) Silasesquioxanes as ligands in inorganic and organometallic chemistry. Polyhedron 14(22):3239–3253.  https://doi.org/10.1016/0277-5387(95)85009-0 CrossRefGoogle Scholar
  18. 18.
    Mori H (2012) Design and synthesis of functional silsesquioxane-based hybrids by hydrolytic condensation of bulky triethoxysilanes. Int J Polym Sci 2012:17–17.  https://doi.org/10.1155/2012/173624 CrossRefGoogle Scholar
  19. 19.
    Sulaiman S (2011) Synthesis and characterization of polyfunctional polyhedral silsesquioxane cages. Dissertation, University of Michigan,Google Scholar
  20. 20.
    Ro HW, Soles CL (2011) Silsesquioxanes in nanoscale patterning applications. Mater Today 14(1–2):20–33.  https://doi.org/10.1016/s1369-7021(11)70019-0 CrossRefGoogle Scholar
  21. 21.
    Liu YZ, Wu XR, Sun Y, Xie WL (2018) POSS dental nanocomposite resin: synthesis, shrinkage, double bond conversion, hardness, and resistance properties. Polymers-Basel 10(4).  https://doi.org/10.3390/polym10040369
  22. 22.
    Wang Y, Vaneski A, Yang HH, Gupta S, Hetsch F, Kershaw SV, Teoh WY, Li HR, Rogach AL (2013) Polyhedral oligomeric silsesquioxane as a ligand for CdSe quantum dots. J Phys Chem C 117(4):1857–1862.  https://doi.org/10.1021/jp3112843 CrossRefGoogle Scholar
  23. 23.
    Elumalai V, Sangeetha D (2018) Anion exchange composite membrane based on octa quaternary ammonium polyhedral oligomeric silsesquioxane for alkaline fuel cells. J Power Sources 375:412–420.  https://doi.org/10.1016/j.jpowsour.2017.06.053 CrossRefGoogle Scholar
  24. 24.
    Lee J, Cho HJ, Jung BJ, Cho NS, Shim HK (2004) Stabilized blue luminescent polyfluorenes: introducing polyhedral oligomeric silsesquioxane. Macromolecules 37(23):8523–8529.  https://doi.org/10.1021/ma0497759 CrossRefGoogle Scholar
  25. 25.
    Chanmungkalakul S, Ervithayasuporn V, Hanprasit S, Masik M, Prigyai N, Kiatkamjornwong S (2017) Silsesquioxane cages as fluoride sensors. Chem Commun 53(89):12108–12111.  https://doi.org/10.1039/c7cc06647c CrossRefGoogle Scholar
  26. 26.
    Smay JE, Gratson GM, Shepherd RF, Cesarano J, Lewis JA (2002) Directed colloidal assembly of 3D periodic structures. Adv Mater 14(18):1279.  https://doi.org/10.1002/1521-4095(20020916)14:18<1279::Aid-Adma1279>3.0.Co;2-A CrossRefGoogle Scholar
  27. 27.
    Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Silsesquioxanes. Chemical reviews 95(5):1409–1430.  https://doi.org/10.1021/cr00037a012
  28. 28.
    Music S, Filipovic-Vincekovic N, Sekovanic L (2011) Precipitation of amorphous SiO2 particles and their properties. Braz J Chem Eng 28(1):89–94.  https://doi.org/10.1590/S0104-66322011000100011 CrossRefGoogle Scholar
  29. 29.
    Nallathambi G, Ramachandran T, Rajendran V, Palanivelu R (2011) Effect of silica nanoparticles and BTCA on physical properties of cotton fabrics. Mater Res 14(4):552–559.  https://doi.org/10.1590/S1516-14392011005000086 CrossRefGoogle Scholar
  30. 30.
    Parks GA (1965) The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem Rev 65(2):177–198.  https://doi.org/10.1021/cr60234a002 CrossRefGoogle Scholar
  31. 31.
    Tohver V, Chan A, Sakurada O, Lewis JA (2001) Nanoparticle engineering of complex fluid behavior. Langmuir 17(26):8414–8421.  https://doi.org/10.1021/la011252w CrossRefGoogle Scholar
  32. 32.
    Kornprobst T, Plank J (2012) Photodegradation of rhodamine B in presence of CaO and NiO-CaO catalysts. Int J Photoenergy 6:Artn 398230.  https://doi.org/10.1155/2012/398230 Google Scholar
  33. 33.
    T.W. Ridler SC (1978) Picture thresholding using an iterative selection method. IEEE Trans Syst, Man, Cybernet 8 (8):630–632. doi: https://doi.org/10.1109/tsmc.1978.4310039
  34. 34.
    Lide DR (2003-2004) CRC handbook of chemistry and physics84th edn. CRC PressGoogle Scholar
  35. 35.
    Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87(9–10):1051–1069.  https://doi.org/10.1515/pac-2014-1117 Google Scholar
  36. 36.
    Lawrence M, Jiang Y (2017) Porosity, pore size distribution, micro-structure In: Bio-aggregates based building materials, vol 23. RILEM state-of-the-art reports. Pp 39-71. doi: https://doi.org/10.1007/978-94-024-1031-0_2

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemical EngineeringUniversity of LouisvilleLouisvilleUSA
  2. 2.Department of NanoscienceUniversity of North Carolina at GreensboroGreensboroUSA
  3. 3.Mechanical EngineeringUniversity of LouisvilleLouisvilleUSA

Personalised recommendations