Advertisement

Colloid and Polymer Science

, Volume 297, Issue 4, pp 513–520 | Cite as

On the features of cooperative mobility in the amorphous phase of ferroelectric polymers

  • V. V. KochervinskiiEmail author
  • I. A. Malyshkina
  • M. A. Gradova
  • N. V. Kozlova
  • N. A. Shmakova
  • M. I. Buzin
  • A. A. Korlyukov
  • S. A. Bedin
Original Contribution
  • 118 Downloads

Abstract

Ferroelectric poly(vinylidene fluoride–hexafluoropropylene) films were prepared by low-temperature crystallization from the acetone and ethyl acetate solutions. Crystalline modifications of the obtained films were different (mixture of β- and γ-phases in case of acetone and predominantly α-phase in case of ethyl acetate). The dielectric spectroscopy studies showed that the relaxation strength of the main relaxation above the glass transition temperature (associated with the cooperative mobility in the amorphous phase) unusually increases with increasing temperature. Thermodynamic relationships suggest that this effect may be explained by assuming that there is a certain long-range order in the amorphous phase. This order may be due to the presence of the local field near the polar planes of the crystals, which form ferroelectric domains.

Graphical abstract

Keywords

Ferroelectric polymers Crystalline polymers PVDF Crystallization Dielectric relaxation 

Notes

Acknowledgments

The authors would like to thank V.S. Khurdin for the help in the measurements and data analysis.

Funding information

The work was supported by the Russian Foundation for Basic Research (RFBR 18-03-00493).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Wang TT, Herbert JM, Glass AM (eds) (1988) The application of ferroelectric polymers. Blackie, GlasgowGoogle Scholar
  2. 2.
    Nalva HS (ed) (1995) Ferroelectric polymers—chemistry, physics and applications. Marcel Dekker Inc, New YorkGoogle Scholar
  3. 3.
    Kochervinskii VV (1994) The properties and applications of fluorine-containing polymer films with piezo- and pyro-activity. Russ Chem Rev 63(4):367–371.  https://doi.org/10.1070/RC1994v063n04ABEH000090 CrossRefGoogle Scholar
  4. 4.
    Granz B (1989) PVDF hydrophone for the measurement of shock waves (lithotripsy). IEEE Trans Electr Insul 24(3):499–502.  https://doi.org/10.1109/14.30896 CrossRefGoogle Scholar
  5. 5.
    Hughes WJ (1992) Underwater polyvinylidenefluoride PVDF acoustic sensors. J Acoust Soc Am 91:2335.  https://doi.org/10.1121/1.403503 CrossRefGoogle Scholar
  6. 6.
    Markose S, Patange SR, Raja S, Jain A, Elias B (2013) Experimental study on dimension effect of PVDF film on energy harvesting. Int J Adv Res Electrical Electron Instrum Eng 2:270–278Google Scholar
  7. 7.
    Latour M, Murphy PV (1981) Application of PVF2 transducers as piezoelectric vibrators for marine fouling prevention. Ferroelectrics 32(1):33–37.  https://doi.org/10.1080/00150198108238670 CrossRefGoogle Scholar
  8. 8.
    Neese B, Chu B, Lu S-G, Wang Y, Furman E, Zhang QM (2008) Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321(5890):821–823.  https://doi.org/10.1126/science.1159655 CrossRefPubMedGoogle Scholar
  9. 9.
    Zhou X, Zhao X, Suo Z, Zou C, Runt J, Liu S, Zhang S, Zhang QM (2009) Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene fluoride-hexafluoropropylene) сopolymer. Appl. Phys. Lett 94(162901):5–3.  https://doi.org/10.1063/1.3123001 CrossRefGoogle Scholar
  10. 10.
    Kochervinskii VV (1996) The structure and properties of block poly(vinylidene fluoride) and systems based on it. Russ Chem Rev 65(10):865–913.  https://doi.org/10.1070/RC1996v065n10ABEH000328 CrossRefGoogle Scholar
  11. 11.
    Vogel H (1921) The law of relation between the viscosity of liquids and the temperature. J Amer Ceram Soc 8:339–355Google Scholar
  12. 12.
    Kochervinskii VV, Kiselev DA, Malinkovich MD, Pavlov AS, Malyshkina IA (2015) Local piezoelectric response, structural and dynamic properties of ferroelectric copolymers of vinylidene fluoride–tetrafluoroethylene. Colloid Polym Sci 293:533–543.  https://doi.org/10.1007/s00396-014-3435-1 CrossRefGoogle Scholar
  13. 13.
    Sasabe H, Saito S, Asahina M, Kakutani H (1969) Dielectric relaxations in poly(vinylidene fluoride). J Polym Sci A-2 7(8):1405–1414.  https://doi.org/10.1002/pol.1969.160070810 CrossRefGoogle Scholar
  14. 14.
    Koizumi N, Yano S, Tsunashima K (1969) Dielectric relaxation of poly(vinylidene fluoride). J Polym Sci C 7(1):59–64.  https://doi.org/10.1002/pol.1969.110070113 CrossRefGoogle Scholar
  15. 15.
    Nakagawa K, Ishida Y (1973) Dielectric relaxations and molecular motions in poly(vinylidene fluoride) with crystal form II. J Polym Sci Polym Phys Ed 11:1503–1533.  https://doi.org/10.1002/pol.1973.180110804 CrossRefGoogle Scholar
  16. 16.
    Yano S, Tadano K, Aoki K, Koizumi N (1974) Alternating-current ionic conduction and dielectric relaxation of poly(vinylidene fluoride) at high temperatures. J Polym Sci B Polym Phys 12:1875–1887.  https://doi.org/10.1002/pol.1974.180120911 CrossRefGoogle Scholar
  17. 17.
    Miyamoto Y, Miyaji H, Asai K (1980) Anisotropy of dielectric relaxation in crystal form II of poly(vinylidene fluoride). J Polym Science: Polym Phys Ed 18:597–606.  https://doi.org/10.1002/pol.1980.180180318 CrossRefGoogle Scholar
  18. 18.
    Böhmer R, Ngai KL, Angell CA, Plazek DJ (1993) Nonexponential relaxations in strong and fragile glass formers. J Chem Phys 99:4201–4209.  https://doi.org/10.1063/1.466117 CrossRefGoogle Scholar
  19. 19.
    Frohlich H (1958) Theory of dielectrics: dielectric constant and dielectric loss. Clarendon Press, OxfordGoogle Scholar
  20. 20.
    Kremer F, Schonhals A (eds) (2003) Broadband dielectric spectroscopy. Springer-Verlag, Berlin HeidelbergGoogle Scholar
  21. 21.
    Blythe AR, Bloor D (2005) Electrical properties of polymers. Cambrige University Press, New YorkGoogle Scholar
  22. 22.
    Kochervinskii V, Malyshkina I, Gavrilova N, Sulyanov S, Bessonova N (2007) Peculiarities of dielectric relaxation in poly(vinylidene fluoride) with different thermal history. J Non-Cryst Sol 353:4443–4447.  https://doi.org/10.1016/j.jnoncrysol.2007.03.034 CrossRefGoogle Scholar
  23. 23.
    Kochervinskii VV, Malyshkina IA, Pavlov AS, Pakuro NI, Bessonova NP, Shmakova NA, Bedin SA, Chubunova EV, Lebedinskii YY (2015) An effect of the electrode material on space charge relaxation in ferroelectric copolymers of vinylidene fluoride. J. Appl. Phys 118(24):244102 (1–9).  https://doi.org/10.1063/1.4938016 CrossRefGoogle Scholar
  24. 24.
    Kochervinskii VV, Malyshkina IA, Markin GV, Gavrilova ND, Bessonova NP (2007) Dielectric relaxation in vinylidene fluoride-hexafluoropropylene copolymers. J Appl Polym Sci 105:1101–1117.  https://doi.org/10.1002/app.26145 CrossRefGoogle Scholar
  25. 25.
    Kochervinskii V, Kozlova N, Malyshkina I, Astakhov V (2018) Structural aspects of the high-temperature space charge relaxation in ferroelectric VDF/TFE 94/6 copolymer. Ferroelectrics 531:1–21.  https://doi.org/10.1080/00150193.2018.1497407 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • V. V. Kochervinskii
    • 1
    Email author
  • I. A. Malyshkina
    • 2
  • M. A. Gradova
    • 3
  • N. V. Kozlova
    • 1
  • N. A. Shmakova
    • 1
    • 4
  • M. I. Buzin
    • 5
  • A. A. Korlyukov
    • 5
  • S. A. Bedin
    • 6
  1. 1.State Research Center of the Russian Federation Karpov Institute of Physical ChemistryMoscowRussia
  2. 2.Faculty of PhysicsM.V. Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Semenov Institute of Chemical PhysicsMoscowRussia
  4. 4.Enikolopov Institute of Synthetic Polymeric MaterialsMoscowRussia
  5. 5.Nesmeyanov Institute of Organoelement CompoundsMoscowRussia
  6. 6.Moscow State Pedagogical UniversityMoscowRussia

Personalised recommendations