Colloid and Polymer Science

, Volume 297, Issue 4, pp 545–556 | Cite as

Polymer-particulate composites with differential interfaces: synthesis, characterization, and mathematical modeling to evaluate interface-yield strength correlations

  • Adeel AfzalEmail author
  • Humaira M. SiddiqiEmail author
  • Shahzad Sarwar
  • Zakya Rubab
  • Adnan Mujahid
Original Contribution


Polymer particulate composites (PPC) are extensively used in numerous mechanical and aviation applications, which take advantage of their synergistic properties such as superior yield strength. This work combines experimental and theoretical approaches to evaluate yield strength of thermosetting PPC made of pristine p-TiO2 or surface-grafted g-TiO2 nanoparticles and an epoxy thermoset. Accordingly, p-PPC and g-PPC sheets containing different volume fraction (ϕf = 0.0234–0.0936) of p-TiO2 or g-TiO2 nanoparticles exhibit variable yield strength. A mathematical model is used to evaluate the effects of nanoparticles aggregation on the relative yield strength of PPC. The interfacial parameters “B” and “Bagg” give a quantitative measure of the ability of stress dispersion by the agglomerated nanoparticles. The higher “B” and “Bagg” values for g-PPC reveal its greater interfacial strength. The experimental data show good correlation with the theoretical predictions. However, these models truly predict PPC’s yield strength only at low volume fraction (ϕf ≤ 0.09) of filler nanoparticles.

Graphical abstract


Aggregation Composites Interfaces Mathematical models Mechanical properties Nanoparticles 


Author contributions

AA & HMS conceived the idea of fabricating thermosetting polymer particulate composites (PPC). HMS supervised synthesis and characterization of PPC, while AA and ZR synthesized TiO2 nanoparticles and PPC. AA and AM performed AFM and SEM characterizations. SS carried out numerical modeling of PPC and compiled theoretical data. The manuscript is written by AA. All authors have given approval to the final version of this manuscript.


This study was supported by the Higher Education Commission of Pakistan under the National Research Program for Universities (project grant no. NRPU-1308).

Compliance with ethical standards

Conflict of interest

AA and HMS have received research grant from the Higher Education Commission of Pakistan. The authors declare that they have no conflict of interest.

Supplementary material

396_2019_4477_MOESM1_ESM.pdf (1.7 mb)
ESM 1 (PDF 1769 kb)


  1. 1.
    Rothon R (2003) Particulate-filled polymer composites, 2nd edn. iSmithers Rapra Publishing, ShrewsburyGoogle Scholar
  2. 2.
    Pascault J-P, Williams RJJ (2010) Epoxy polymers: new materials and innovations. Wiley‐VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  3. 3.
    Chawla KK (2012) Composite materials: science and engineering, 3rd edn. Springer-Verlag, New YorkGoogle Scholar
  4. 4.
    Dorigato A, Pegoretti A, Bondioli F, Messori M (2010) Improving epoxy adhesives with zirconia nanoparticles. Compos Interfaces 17:873–892CrossRefGoogle Scholar
  5. 5.
    Srivastava SK, Singh IP (2012) Hybrid epoxy nanocomposites: lightweight materials for structural applications. Polym J 44:334–339CrossRefGoogle Scholar
  6. 6.
    Gu H, Guo J, He Q, Tadakamalla S, Zhang X, Yan X, Huang Y, Colorado HA, Wei S, Guo Z (2013) Flame-retardant epoxy resin nanocomposites reinforced with polyaniline-stabilized silica nanoparticles. Ind Eng Chem Res 52:7718–7728. CrossRefGoogle Scholar
  7. 7.
    Ghosal A, Ahmad S (2017) High performance anti-corrosive epoxy–titania hybrid nanocomposite coatings. New J Chem 41:4599–4610. CrossRefGoogle Scholar
  8. 8.
    Shen D, Zhan Z, Liu Z, Cao Y, Zhou L, Liu Y, Dai W, Nishimura K, Li C, Lin CT, Jiang N, Yu J (2017) Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires. Sci Rep 7.
  9. 9.
    Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B Eng 39:933–961. CrossRefGoogle Scholar
  10. 10.
    Chen L, Chai S, Liu K, Ning N, Gao J, Liu Q, Chen F, Fu Q (2012) Enhanced epoxy/silica composites mechanical properties by introducing graphene oxide to the Interface. ACS Appl Mater Interfaces 4:4398–4404. CrossRefPubMedGoogle Scholar
  11. 11.
    Jesson DA, Watts JF (2012) The interface and interphase in polymer matrix composites: effect on mechanical properties and methods for identification. Polym Rev 52:321–354. CrossRefGoogle Scholar
  12. 12.
    Ciprari D, Jacob K, Tannenbaum R (2006) Characterization of polymer nanocomposite interphase and its impact on mechanical properties. Macromolecules 39:6565–6573. CrossRefGoogle Scholar
  13. 13.
    Li G, Helms JE, Pang S-S, Schulz K (2001) Analytical modeling of tensile strength of particulate-filled composites. Polym Compos 22:593–603CrossRefGoogle Scholar
  14. 14.
    Zare Y (2016) Modeling the strength and thickness of the interphase in polymer nanocomposite reinforced with spherical nanoparticles by a coupling methodology. J Colloid Interface Sci 465:342–346CrossRefPubMedGoogle Scholar
  15. 15.
    Zare Y (2016) Development of Nicolais–Narkis model for yield strength of polymer nanocomposites reinforced with spherical nanoparticles. Int J Adhes Adhes 70:191–195CrossRefGoogle Scholar
  16. 16.
    Zare Y (2016) Development of Halpin-Tsai model for polymer nanocomposites assuming interphase properties and nanofiller size. Polym Test 51:69–73CrossRefGoogle Scholar
  17. 17.
    Spring DW, Paulino GH (2015) Computational homogenization of the debonding of particle reinforced composites: the role of interphases in interfaces. Comput Mater Sci 109:209–224. CrossRefGoogle Scholar
  18. 18.
    Pukánszky B (1990) Influence of interface interaction on the ultimate tensile properties of polymer composites. Composites 21:255–262CrossRefGoogle Scholar
  19. 19.
    Zare Y (2016) Modeling the yield strength of polymer nanocomposites based upon nanoparticle agglomeration and polymer–filler interphase. J Colloid Interface Sci 467:165–169CrossRefPubMedGoogle Scholar
  20. 20.
    Zakaria AZ, Shelesh-Nezhad K (2014) The effects of interphase and interface characteristics on the tensile behaviour of POM/CaCO3 nanocomposites. Nanomater Nanotechnol 4:17. CrossRefGoogle Scholar
  21. 21.
    Duong HP, Le MD, Dao HC, Chen C-Y (2017) Surface modification of TiO 2 nanotubes by grafting with APTS coupling agents. Mater Res Express 4:105043. CrossRefGoogle Scholar
  22. 22.
    Nik OG, Sadrzadeh M, Kaliaguine S (2012) Surface grafting of FAU/EMT zeolite with (3-aminopropyl) methyldiethoxysilane optimized using Taguchi experimental design. Chem Eng Res Des 90:1313–1321. CrossRefGoogle Scholar
  23. 23.
    Bittmann B, Haupert F, Schlarb AK (2011) Preparation of TiO2/epoxy nanocomposites by ultrasonic dispersion and their structure property relationship. Ultrason Sonochem 18:120–126. CrossRefPubMedGoogle Scholar
  24. 24.
    Bittmann B, Haupert F, Schlarb AK (2012) Preparation of TiO2 epoxy nanocomposites by ultrasonic dispersion and resulting properties. J Appl Polym Sci 124:1906–1911. CrossRefGoogle Scholar
  25. 25.
    Goyat MS, Rana S, Halder S, Ghosh PK (2018) Facile fabrication of epoxy-TiO 2 nanocomposites: a critical analysis of TiO 2 impact on mechanical properties and toughening mechanisms. Ultrason Sonochem 40:861–873. CrossRefPubMedGoogle Scholar
  26. 26.
    Schuman TP, Siddabattuni S, Cox O, Dogan F (2010) Improved dielectric breakdown strength of covalently-bonded Interface polymer–particle nanocomposites. Compos Interfaces 17:719–731. CrossRefGoogle Scholar
  27. 27.
    Barrett S (2017) Image SXM. University of Liverpool, UKGoogle Scholar
  28. 28.
    ASTM Standard D882-12 (2012) Standard test method for tensile properties of thin plastic sheeting 0801:12Google Scholar
  29. 29.
    Zare Y (2016) A interfacial parameter in Nicolais–Narkis model for yield strength of polymer particulate nanocomposites as a function of material and interphase properties. J Colloid Interface Sci 470:245–249CrossRefPubMedGoogle Scholar
  30. 30.
    Rong Y, Chen H-Z, Wu G, Wang M (2005) Preparation and characterization of titanium dioxide nanoparticle/polystyrene composites via radical polymerization. Mater Chem Phys 91:370–374. CrossRefGoogle Scholar
  31. 31.
    Nur H (2006) Modification of titanium surface species of titania by attachment of silica nanoparticles. Mater Sci Eng B 133:49–54. CrossRefGoogle Scholar
  32. 32.
    Chen Y, Wang H, Dang B, Xiong Y, Yao Q, Wang C, Sun Q, Jin C (2017) Bio-inspired nacre-like nanolignocellulose-poly (vinyl alcohol)-TiO2 composite with superior mechanical and photocatalytic properties. Sci Rep 7:1823. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nolan NT, Seery MK, Pillai SC (2009) Spectroscopic investigation of the anatase-to-rutile transformation of sol−gel-synthesized TiO2 photocatalysts. J Phys Chem C 113:16151–16157. CrossRefGoogle Scholar
  34. 34.
    Kasinathan K, Kennedy J, Elayaperumal M, Henini M, Malik M (2016) Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications. Sci Rep 6.
  35. 35.
    Lin W, Frei H (2002) Photochemical and FT-IR probing of the active site of hydrogen peroxide in Ti silicalite sieve. J Am Chem Soc 124:9292–9298CrossRefPubMedGoogle Scholar
  36. 36.
    Soult AS, Carter DF, Schreiber HD, van de Burgt LJ, Stiegman AE (2002) Spectroscopy of amorphous and crystalline Titania−silica materials. J Phys Chem B 106:9266–9273. CrossRefGoogle Scholar
  37. 37.
    Eshaghi A, Eshaghi A (2012) Investigation of superhydrophilic mechanism of titania nano layer thin film—silica and indium oxide dopant effect. Bull Mater Sci 35:137–142Google Scholar
  38. 38.
    Nyquist RA, Putzig CL, Leugers MA (1996)Handbook of infrared and Raman spectra of inorganic compounds and organic salts, 1st edn. Academic Press, San DiegoGoogle Scholar
  39. 39.
    Fu G, Vary PS, Lin C-T (2005) Anatase TiO 2 nanocomposites for antimicrobial coatings. J Phys Chem B 109:8889–8898. CrossRefPubMedGoogle Scholar
  40. 40.
    Khan MA, Jung H-T, Yang O-B (2006) Synthesis and characterization of ultrahigh crystalline TiO 2 nanotubes. J Phys Chem B 110:6626–6630. CrossRefPubMedGoogle Scholar
  41. 41.
    Li Z, Cong S, Xu Y (2014) Brookite vs anatase TiO 2 in the photocatalytic activity for organic degradation in water. ACS Catal 4:3273–3280. CrossRefGoogle Scholar
  42. 42.
    Wang Y, Li L, Huang X, Li Q, Li G (2015) New insights into fluorinated TiO 2 (brookite, anatase and rutile) nanoparticles as efficient photocatalytic redox catalysts. RSC Adv 5:34302–34313. CrossRefGoogle Scholar
  43. 43.
    Di Paola A, Bellardita M, Palmisano L (2013) Brookite, the least known TiO2 photocatalyst. Catalysts 3:36–73. CrossRefGoogle Scholar
  44. 44.
    Fischer K, Gawel A, Rosen D, Krause M, Abdul Latif A, Griebel J, Prager A, Schulze A (2017) Low-temperature synthesis of anatase/rutile/Brookite TiO2 nanoparticles on a polymer membrane for Photocatalysis. Catalysts 7:209. CrossRefGoogle Scholar
  45. 45.
    Sen S, Govindarajan V, Pelliccione CJ, Wang J, Miller DJ, Timofeeva EV (2015) Surface modification approach to TiO 2 Nanofluids with high particle concentration, low viscosity, and electrochemical activity. ACS Appl Mater Interfaces 7:20538–20547. CrossRefPubMedGoogle Scholar
  46. 46.
    Naasani I (2013) Surface modified nanoparticles, Patent number: WO/2013/093631.
  47. 47.
    Pazokifard S, Mirabedini SM, Esfandeh M, Mohseni M, Ranjbar Z (2012) Silane grafting of TiO2 nanoparticles: dispersibility and photoactivity in aqueous solutions. Surf Interface Anal 44:41–47. CrossRefGoogle Scholar
  48. 48.
    Afzal A, Siddiqi HM, Saeed S, Ahmad Z (2013) Exploring resin viscosity effects in solventless processing of nano-SiO2/epoxy polymer hybrids. RSC Adv 3:3885–3892. CrossRefGoogle Scholar
  49. 49.
    Qiao H, Xu W, Chao M, Liu J, Lei W, Zhou X, Wang R, Zhang L (2017) Preparation and performance of silica/epoxy group-functionalized biobased elastomer nanocomposite. Ind Eng Chem Res 56:881–889. CrossRefGoogle Scholar
  50. 50.
    Guo Z, Pereira T, Choi O, Wang Y, Hahn HT (2006) Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. J Mater Chem 16:2800–2808CrossRefGoogle Scholar
  51. 51.
    Siqueira G, Bras J, Dufresne A (2008) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRefGoogle Scholar
  52. 52.
    Chung Y-C, Choi JW, Park JS, Shin CH, Chun BC (2011) Covalent bonding of surface-modified montmorillonite nanoparticle with polyurethane and its impact on shape memory effect and mechanical properties. J Thermoplast Compos Mater 24:477–497CrossRefGoogle Scholar
  53. 53.
    Zhang X, Xu X, Wu T (2017) Mechanical properties, thermal and crystallization behavior of different surface-modified silica nanoparticle-filled PA66 composites. J Polym Eng 37:559–576Google Scholar
  54. 54.
    Afzal A, Siddiqi HM, Saeed S, Ahmad Z (2011) The influence of epoxy functionalized silica nanoparticles on stress dispersion and crack resistance in epoxy-based hybrids. Mater Express 1:299–306. CrossRefGoogle Scholar
  55. 55.
    Rubab Z, Afzal A, Siddiqi HM, Saeed S (2014) Augmenting thermal and mechanical properties of epoxy thermosets: the role of thermally-treated versus surface-modified TiO2 nanoparticles. Mater Express 4:54–64. CrossRefGoogle Scholar
  56. 56.
    Rubab Z, Afzal A, Siddiqi HM, Saeed S (2014) Preparation, characterization, and enhanced thermal and mechanical properties of epoxy-Titania composites. Sci World J 2014:e515739. CrossRefGoogle Scholar
  57. 57.
    Quan D, Ivankovic A (2015) Effect of core–shell rubber (CSR) nano-particles on mechanical properties and fracture toughness of an epoxy polymer. Polymer 66:16–28. CrossRefGoogle Scholar
  58. 58.
    Richard S, Rajadurai JS, Manikandan V (2016) Influence of particle size and particle loading on mechanical and dielectric properties of biochar particulate-reinforced polymer nanocomposites. Int J Polym Anal Charact 21:462–477. CrossRefGoogle Scholar
  59. 59.
    Kinloch AJ, Taylor AC (2003) Mechanical and fracture properties of epoxy/inorganic micro- and nano-composites. J Mater Sci Lett 22:1439–1441. CrossRefGoogle Scholar
  60. 60.
    Kornmann X, Thomann R, Mülhaupt R, Finter J, Berglund L (2002) Synthesis of amine-cured, epoxy-layered silicate nanocomposites: the influence of the silicate surface modification on the properties. J Appl Polym Sci 86:2643–2652CrossRefGoogle Scholar
  61. 61.
    Isik I, Yilmazer U, Bayram G (2003) Impact modified epoxy/montmorillonite nanocomposites: synthesis and characterization. Polymer 44:6371–6377CrossRefGoogle Scholar
  62. 62.
    Raja SN, Olson ACK, Limaye A, Thorkelsson K, Luong A, Lin L, Ritchie RO, Xu T, Alivisatos AP (2015) Influence of three-dimensional nanoparticle branching on the Young’s modulus of nanocomposites: effect of interface orientation. Proc Natl Acad Sci 112:6533–6538. CrossRefPubMedGoogle Scholar
  63. 63.
    Holt AP, Bocharova V, Cheng S, Kisliuk AM, White BT, Saito T, Uhrig D, Mahalik JP, Kumar R, Imel AE, Etampawala T, Martin H, Sikes N, Sumpter BG, Dadmun MD, Sokolov AP (2016) Controlling interfacial dynamics: covalent bonding versus physical adsorption in polymer nanocomposites. ACS Nano 10:6843–6852. CrossRefPubMedGoogle Scholar
  64. 64.
    Islam MS, Masoodi R, Rostami H (2013) The effect of nanoparticles percentage on mechanical behavior of silica-epoxy nanocomposites. J Nanosci 2013:1–10. CrossRefGoogle Scholar
  65. 65.
    Bikiaris DN, Vassiliou A, Pavlidou E, Karayannidis GP (2005) Compatibilisation effect of PP-g-MA copolymer on iPP/SiO2 nanocomposites prepared by melt mixing. Eur Polym J 41:1965–1978CrossRefGoogle Scholar
  66. 66.
    Zhang G, Schlarb AK, Tria S, Elkedim O (2008) Tensile and tribological behaviors of PEEK/nano-SiO2 composites compounded using a ball milling technique. Compos Sci Technol 68:3073–3080CrossRefGoogle Scholar
  67. 67.
    Wang X, Wang L, Su Q, Zheng J (2013) Use of unmodified SiO2 as nanofiller to improve mechanical properties of polymer-based nanocomposites. Compos Sci Technol 89:52–60CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro”BariItaly
  2. 2.Department of Chemistry, College of ScienceUniversity of Hafr Al BatinHafr Al BatinSaudi Arabia
  3. 3.Department of ChemistryQuaid-i-Azam UniversityIslamabadPakistan
  4. 4.College of Information TechnologyUniversity of the PunjabLahorePakistan
  5. 5.Institute of ChemistryUniversity of the PunjabLahorePakistan

Personalised recommendations