Advertisement

Colloid and Polymer Science

, Volume 297, Issue 4, pp 503–512 | Cite as

A high strength hydrogel with quadruple-shape memory under the ambient condition

  • Xin Li
  • Shuangfeng Xu
  • Yaling Wang
  • Zai-Yin HuEmail author
  • Ru WangEmail author
Original Contribution

Abstract

It is worth looking forward to manufacturing a shape memory hydrogel (SMH) with good mechanical properties for practical applications in a simple and rapid manner. In this study, the one-pot method has been proposed to prepare a quadruple shape memory hydrogel (PAA-CS, poly(acrylic acid)-chitosan). The PAA-CS hydrogel obtained by mixing acrylic acid (AA), chitosan (CS), initiator, and cross-linker at 60 °C shows excellent function of shape memory and recovery less than 20 s. Moreover, its maximum deformation can reach to 100%. Scanning electron microscopy (SEM) showed that PAA-CS hydrogels would form new cross-linked networks in NaOH, NaCl, and FeCl3, and these new networks can trigger quadruple shape memory. In addition, the tensile and compressive strength tests showed the PAA-CS hydrogel possesses outstanding mechanical properties. Its excellent property has enormous potential in applications where multi-shape changes responding to different stimuli are required.

Keywords

Mechanical properties One-pot method Quadruple shape memory hydrogel Maximum deformation 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Li X, Serpe MJ (2016) Understanding the shape memory behavior of self-bending materials and their use as sensors. Adv Funct Mater 26:3282–3290CrossRefGoogle Scholar
  2. 2.
    Li Z, Zhang XY, Wang SQ, Yang Y, Qin BY, Wang K, Xie T, Wei Y, Ji Y (2016) Polydopamine coated shape memory polymer: enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization. Chem Sci 7:4741–4747CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dong W (2013) Multiple-stimulus-responsive hydrogels of cationic surfactants and azoic salt mixtures. Colloid Polym Sci 291(12):2935–2946CrossRefGoogle Scholar
  4. 4.
    Li Y, Chen HM, Liu D, Wang WX, Liu Y, Zhou SB (2015) pH-responsive shape memory poly(ethylene glycol)–poly(ε-caprolactone)-based polyurethane/cellulose nanocrystals nanocomposite. ACS Appl Mater Interfaces 7:12988–12999CrossRefPubMedGoogle Scholar
  5. 5.
    Zhao Q, Qi HJ, Xie T (2015). Prog Polym Sci 49–50:79–120CrossRefGoogle Scholar
  6. 6.
    Lu W, Le X, Zhang J et al (2017) Supramolecular shape memory hydrogels: a new bridge between stimuli-responsive polymers and supramolecular chemistry. Chem Soc Rev 46(5):1284–1294CrossRefPubMedGoogle Scholar
  7. 7.
    Razzaq MY, Behl M, Kratz K, Lendlein A (2013) Triple-shape effect in polymer-based composites by cleverly matching geometry of active component with heating method. Adv Mater 25:5514–5518CrossRefPubMedGoogle Scholar
  8. 8.
    Shao Y, Lavigueur C, Zhu XX (2012) Multishape memory effect of norbornene-based copolymers with cholic acid pendant groups. Macromolecules 45:1924–1930CrossRefGoogle Scholar
  9. 9.
    Xiao YY, Gong XL, Kang Y, Jiang ZC, Zhang S, Li BJ (2016) Light-, pH-and thermal-responsive hydrogels with the triple-shape memory effect. Chem Commun 52(70):10609–10612CrossRefGoogle Scholar
  10. 10.
    Le X, Lu W, Zheng J et al (2016) Stretchable supramolecular hydrogels with triple shape memory effect. Chem Sci 7(11):6715–6720CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Xiao H, Lu W, Le X et al (2016) A multi-responsive hydrogel with a triple shape memory effect based on reversible switches. Chem Commun 52(90):13292–13295CrossRefGoogle Scholar
  12. 12.
    Hao X, Liu H et al (2013) Thermal-responsive self-healing hydrogel based on hydrophobically;modified chitosan and vesicle. Colloid Polym Sci 291(7):1749–1758CrossRefGoogle Scholar
  13. 13.
    Peng K, Yu H, Yang H, Hao X, Yasin A, Zhang X (2017) A mechanically robust hydrogel with thermally induced plasticity and a shape memory effect. Soft Matter 13(11):2135–2140CrossRefPubMedGoogle Scholar
  14. 14.
    Lu X, Chan CY, Lee KI, Ng PF, Fei B, Xin JH, Fu J (2014) Super-tough and thermo-healable hydrogel–promising for shape-memory absorbent fiber. J Mater Chem B 2(43):7631–7638CrossRefGoogle Scholar
  15. 15.
    Fan Y, Zhou W, Yasin A, Li H, Yang H (2015) Dual-responsive shape memory hydrogels with novel thermoplasticity based on a hydrophobically modified polyampholyte. Soft Matter 11(21):4218–4225CrossRefPubMedGoogle Scholar
  16. 16.
    Yang X, Zhou L, Lv L et al (2016) Multi-stimuli-responsive poly (NIPA-co-HEMA-co-NVP) with spironaphthoxazine hydrogel for optical data storage application. Colloid Polym Sci 294(10):1–10CrossRefGoogle Scholar
  17. 17.
    Xu B, Zhang YY, Liu WG (2015) Hydrogen-bonding toughened hydrogels and emerging CO2-responsive shape memory effect. Macromol Rapid Commun 36:1585–1591CrossRefPubMedGoogle Scholar
  18. 18.
    Kalia S, Kango S, Kumar A, Haldorai Y, Kumari B, Kumar R (2014) Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym Sci 292(9):2025–2052CrossRefGoogle Scholar
  19. 19.
    Jiang F, Hsieh YL (2014) Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing–thawing. J Mater Chem A 2(2):350–359CrossRefGoogle Scholar
  20. 20.
    Luo H, Hu J, Zhu Y (2011) Polymeric shape memory nanocomposites with heterogeneous twin switches. Macromol Chem Phys 212:1981–1986CrossRefGoogle Scholar
  21. 21.
    Ladet S, David L, Domard A (2008) Multi-membrane hydrogels. Nature 452(7183):76–79CrossRefPubMedGoogle Scholar
  22. 22.
    Han Y, Bai T, Liu Y, Zhai X, Liu W (2012) Zinc ion uniquely induced triple shape memory effect of dipole-dipole reinforced ultra-high strength hydrogels. Macromol Rapid Commun 33:225–231CrossRefPubMedGoogle Scholar
  23. 23.
    Nan W, Wang W, Gao H, Liu W (2013) Fabrication of a shape memory hydrogel based on imidazole–zinc ion coordination for potential cell-encapsulating tubular scaffold application. Soft Matter 9:132–137CrossRefGoogle Scholar
  24. 24.
    Nan WJ, Wang W, Gao H, Liu WG (2013) Fabrication of a shape memory hydrogel based on imidazole-zinc ion coordination for potential cell-encapsulating tubular 2016 scaffold application. Soft Matter 9:132–137.[CrossRef]CrossRefGoogle Scholar
  25. 25.
    Yasin A, Lu HZ, Rehman SU, Siddiqb M, Yang HY (2014) Compartmentalized multilayer hydrogel formation using a stimulus-responsive self-assembling polysaccharide. Soft Matter 10:972–977 [CrossRef]CrossRefPubMedGoogle Scholar
  26. 26.
    Xiao H, Ma C, Le X et al (2017) A multiple shape memory hydrogel induced by reversible physical interactions at ambient condition. Polymers 9(4):138CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Yasin A, Li H, Lu Z, Rehman S, Siddiq M, Yang H (2014) A shape memory hydrogel induced by the interactions between metal ions and phosphate. Soft Matter 10(7):972–977CrossRefPubMedGoogle Scholar
  28. 28.
    Zhao L, Huang J, Zhang Y, Wang T, Sun W, Tong Z (2017) Programmable and bidirectional bending of soft actuators based on janus structure with sticky tough PAA-clay hydrogel. ACS Appl Mater Interfaces 9(13):11866–11873CrossRefPubMedGoogle Scholar
  29. 29.
    Kabiri K, Omidian H, Hashemi SA, Zohuriaan-Mehr MJ (2003) Synthesis of fast-swelling superabsorbent hydrogels: effect of crosslinker type and concentration on porosity and absorption rate. Eur Polym J 39(7):1341–1348CrossRefGoogle Scholar
  30. 30.
    Niki E (1990) Free radical initiators as source of water-or lipid-soluble peroxyl radicals. Methods Enzymol. Academic Press 186:100–108CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied Chemistry, College of Chemical EngineeringSichuan UniversityChengduChina
  2. 2.School of Chemical EngineeringSichuan UniversityChengduChina

Personalised recommendations