Advertisement

Colloid and Polymer Science

, Volume 297, Issue 4, pp 571–586 | Cite as

Dodecyl sulfate-based anionic surface-active ionic liquids: synthesis, surface properties, and interaction with gelatin

  • Yu Sun
  • Xiaoqing Xu
  • Mengyi Qin
  • Nanjiong Pang
  • Guowei WangEmail author
  • Linghua ZhuangEmail author
Original Contribution

Abstract

Four dodecyl sulfate-based anionic surface-active ionic liquids were synthesized. Physicochemical parameters of surface-active ionic liquids (SAILs) or SAIL/gelatin aqueous solutions were demonstrated. Critical micelle concentration (cmc) values of [Emim][C12H25SO4], [Amim][C12H25SO4], [Bmim][C12H25SO4], and [Etmim][C12H25SO4] were 2.10 mmol/L, 1.95 mmol/L, 0.95 mmol/L, and 0.86 mmol/L at 298.15 K, respectively. cmc values of four SAILs followed the decreasing trend: [Emim][C12H25SO4] ≈ [Amim][C12H25SO4] > [Bmim][C12H25SO4] ≈ [Etmim][C12H25SO4]. The alkyl chain length (ethyl to butyl group) and electron absorption effect (carboxylate ester or allyl group) of substituent in cationic imidazolium groups played important role in micelle formation of SAILs. cmc values of SAIL/gelatin aqueous solutions were lower than those of SAILs. Micelle formation (SAIL or SAIL/gelatin) was spontaneous, exothermic, and entropy-driven. From DFT calculation, typical hydrogen bonds were found between active hydrogen atom of imidazole ring and oxygen, sulfur atoms of sulfate anion group. The information obtained would provide guide for design and synthesis of novel SAILs for wide gelatin application.

Graphical abstract

Keywords

Surface-active ionic liquid Gelatin Critical micelle concentration Thermodynamic parameters DFT molecular simulation 

Abbreviations

ILs

Ionic liquids

SAIL

Surface-active ionic liquid

[Amim]Cl

1-Allyl-3-methylimidazolium chloride

[Bmim]Cl

1-Butyl-3-methylimidazolium chloride

[Emim]Cl

1-Ethyl-3-methylimidazolium chloride

[Etmim]Cl

3-Methyl-1-ethoxycarbonylimidazolium chloride

[Amim][C12H25SO4]

1-Allyl-3-methylimidazolium dodecyl sulfate

[Bmim][C12H25SO4]

1-Butyl-3-methylimidazolium dodecyl sulfate

[Emim][C12H25SO4]

1-Ethyl-3-methylimidazolium dodecyl sulfate

[Etmim][C12H25SO4]

3-Methyl-1-ethoxycarbonylimidazolium dodecyl sulfate

GPHyp

Triplepeptide (Gly-Pro-Hyp)

DFT

Density functional theory

Amin

Minimum surface area per molecule

cmc

Critical micelle concentration

γcmc

Surface tension at critical micelle concentration

Γmax

Maximum surface excess

β value

Degree of counterion binding to micelles

\( \varDelta {G}_{ads}^0 \)

Gibbs free energy of adsorption

\( \varDelta {G}_m^0 \)

Gibbs free energy change of micellization

\( \varDelta {H}_m^o \)

Standard enthalpy change of micellization

\( \varDelta {S}_m^o \)

Standard entropy change of micellization

HNMR

H-Nuclear magnetic resonance

Notes

Funding

This work was financed by National Natural Science Foundation of China (No. 21706127) and Natural Science Foundation of Jiangsu Province (BK20140939), which were granted to Linghua Zhuang. The authors also gratefully appreciated the support from National/Jiangsu Students Innovation and Entrepreneurship Training Program (Nos. 201710291015, 201710291016, 2018DC661) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX18-0345).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2019_4473_MOESM1_ESM.doc (241 kb)
ESM 1 (DOC 241 kb)

References

  1. 1.
    Greaves TL, Drummond CJ (2015) Protic ionic liquids: evolving structure-property relationships and expanding applications. Chem Rev 115(20):11379–11448CrossRefPubMedGoogle Scholar
  2. 2.
    da Costa Lopes AM, Bogel-Łukasik R (2015) Acidic ionic liquids as sustainable approach of cellulose and lignocellulosic biomass conversion without additional catalysts. ChemSusChem 8:947–965CrossRefGoogle Scholar
  3. 3.
    Mahmood H, Moniruzzaman M, Yusup S, Welton T (2017) Ionic liquids assisted processing of renewable resources for the fabrication of biodegradable composite materials. Green Chem 19(9):2051–2075CrossRefGoogle Scholar
  4. 4.
    Ventura SPM, Silva FA, Quental MV, Mondal D, Freire MG, Coutinho JAP (2017) Ionic-liquid-mediated extraction and separation processes for bioactive compounds: past present and future trends. Chem Rev 117:6984–7052CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Egorova KS, Gordeev EG, Ananikov VP (2017) Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem Rev 117(5):7132–7189CrossRefGoogle Scholar
  6. 6.
    Paul BK, Moulik SP (2015) Ionic liquid-based surfactant science: formulation, characterization and applications. John Wiley & Sons, Inc., New JerseyCrossRefGoogle Scholar
  7. 7.
    Kuchlyan J, Kundu N, Sarkar N (2016) Ionic liquids in microemulsions: formulation and characterization. Curr Opin Colloid Interface Sci 25:27–38CrossRefGoogle Scholar
  8. 8.
    Bera A, Belhaj H (2016) Ionic liquids as alternatives of surfactants in enhanced oil recovery—a state-of-the-art review. J Molecular Liquids 224:177–188CrossRefGoogle Scholar
  9. 9.
    Pal A, Yadav S (2017) Effect of a copolymer poly(4-styrenesufonic acid-co-maleic acid) sodium salt on aggregation behaviour of imidazolium based surface active ionic liquid in aqueous solution. J Molecular Liquids 246:342–349CrossRefGoogle Scholar
  10. 10.
    Wu FG, Yu JS, Sun SF, Sun HY, Luo JJ, Yu ZW (2012) Stepwise ordering of imidazolium-based cationic surfactants during cooling-induced crystallization. Langmuir 28(19):7350–7359CrossRefPubMedGoogle Scholar
  11. 11.
    Thomas E, Thomas D, Bhuvaneswari S, Vijayalakshmi KP, George BK (2018) 1-Hexadecyl-3-methylimidazolium chloride: structure, thermal stability and decomposition mechanism. J Mol Liq 249:404–411CrossRefGoogle Scholar
  12. 12.
    Wasserscheid P, Hal R, Bösmann A (2002) 1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate-an even “greener” ionic liquid. Green Chem 4:400–404CrossRefGoogle Scholar
  13. 13.
    Singh T, Drechsler M, Mueller AHE, Mukhopadhyay I, Kumar A (2010) Micellar transitions in the aqueous solutions of a surfactant-like ionic liquid: 1-butyl-3-methylimidazolium octylsulfate. Phys Chem Chem Phys 12:11728–11735CrossRefPubMedGoogle Scholar
  14. 14.
    Rao KS, Trivedi TJ, Arvind Kumar A (2012) Aqueous-biamphiphilic ionic liquid systems: self-assembly and synthesis of gold nanocrystals/microplates. J Phys Chem B 116(49):14363–14374CrossRefPubMedGoogle Scholar
  15. 15.
    Brown P, Butts CP, Eastoe J, Fermin D, Grillo I, Lee HC, Parker D, Plana D, Richardson RM (2012) Anionic surfactant ionic liquids with 1-butyl-3-methyl-imidazolium cations: characterization and application. Langmuir 28:2502–2509CrossRefPubMedGoogle Scholar
  16. 16.
    Sastry NV, Vaghela NM, Macwan PM, Soni SS, Aswal VK, Gibaud A (2012) Aggregation behavior of pyridinium based ionic liquids in water-surface tension, 1H NMR chemical shifts, SANS and SAXS measurements. J Colloid Interface Sci 371(1):52–61CrossRefPubMedGoogle Scholar
  17. 17.
    Sashina ES, Kashirskii DA, Janowska G, Zaborski M (2013) Thermal properties of 1-alkyl-3-methylpyridinium halide-based ionic liquids. Thermochim Acta 568:185–188CrossRefGoogle Scholar
  18. 18.
    Lava K, Binnemans K, Cardinaels T (2009) Piperidinium, piperazinium and morpholinium ionic liquid crystals. J Phys Chem B 113(28):9506–9511CrossRefPubMedGoogle Scholar
  19. 19.
    Triolo A, Russina O, Fazio B, Appetecchi G, Carewska M, Passerini S (2009) Nanoscale organization in piperidinium-based room temperature ionic liquids. J Chem Phys 130(16):164521.  https://doi.org/10.1063/1.3119977 CrossRefPubMedGoogle Scholar
  20. 20.
    Lee WY, Kim KS, You JK, Hong YK (2016) Effect of cations in ionic liquids on the extraction characteristics of 1,3-propanediol by ionic liquid-based aqueous biphasic systems. ACS Sustain Chem Eng 4(2):572–576CrossRefGoogle Scholar
  21. 21.
    Pham TD, Kobayashi K, Adachi Y (2015) Adsorption of anionic surfactant sodium dodecyl sulfate onto alpha alumina with small surface area. Colloid Polymer Science 293(1):217–227CrossRefGoogle Scholar
  22. 22.
    Pham TD, Do TT, Ha VL, Doan THY, Nguyen TAH, Mai TD, Kobayashi M, Adachi Y (2017) Adsorptive removal of ammonium ion from aqueous solution using surfactant-modified alumina. Environ Chem 14(5):327–337CrossRefGoogle Scholar
  23. 23.
    Jiao JJ, Dong B, Zhang HN, Zhao YY, Wang XQ, Wang R, Yu L (2012) Aggregation behaviors of dodecyl sulfate-based anionic surface active ionic liquids in water. J Phys Chem B 116:958–965CrossRefGoogle Scholar
  24. 24.
    Jiao JJ, Zhang Y, Fang LY, Yu L, Sun LM, Wang R, Cheng N (2013) Electrolyte effect on the aggregation behavior of 1-butyl-3-methylimidazolium dodecylsulfate in aqueous solution. J Colloid Interface Science 402:139–145CrossRefGoogle Scholar
  25. 25.
    Geng F, Zheng LQ, Liu J, Yu L, Tung CH (2009) Interactions between a surface active imidazolium ionic liquid and BSA. Colloid Polymer Science 287:1253–1259CrossRefGoogle Scholar
  26. 26.
    Singh T, Bharmoria P, Morikawa M, Kimizuka N, Kumar A (2012) Ionic liquids induced structural changes of bovine serum albumin in aqueous media: a detailed physicochemical and spectroscopic study. J Phys Chem B 116:11924–11935CrossRefPubMedGoogle Scholar
  27. 27.
    Wang XQ, Liu J, Sun LM, Yu L, Jiao JJ, Wang R (2012) Interaction of bovine serum albumin with ester-functionalized anionic surface-active ionic liquids in aqueous solution: a detailed physicochemical and conformational study. J Phys Chem B 116:12479–12488CrossRefPubMedGoogle Scholar
  28. 28.
    Bharmoria P, Rao KS, Trivedi TJ, Kumar A (2014) Biamphiphilic ionic liquid induced folding alterations in the structure of bovine serum albumin in aqueous medium. J Phys Chem B 118:115–124CrossRefPubMedGoogle Scholar
  29. 29.
    Singh G, Kang TS (2015) Ionic liquid surfactant mediated structural transitions and self-assembly of bovine serum albumin in aqueous media: effect of functionalization of ionic liquid surfactants. J Phys Chem B 119:10573–10585CrossRefPubMedGoogle Scholar
  30. 30.
    Liu Y, Yang L, Guo R (2013) Interaction between β-casein micelles and imidazolium-based ionic liquid surfactant. Soft Matter 9:3671–3680CrossRefGoogle Scholar
  31. 31.
    Bharmoria P, Mehta MJ, Pancha I, Kumar A (2014) Structural and functional stability of cellulase in aqueous-biamphiphilic ionic liquid surfactant solution. J Phys Chem B 118:9890–9899CrossRefPubMedGoogle Scholar
  32. 32.
    Mandal B, Mondal S, Pan A, Moulik SP, Ghosh S (2015) Physicochemical study of the interaction of lysozyme with surface active ionic liquid 1-butyl-3-methylimidazolium octylsulfate [BMIM][OS] in aqueous and buffer media. Colloids Surfaces A Physicochem Eng Aspects 484:345–353CrossRefGoogle Scholar
  33. 33.
    Chernysheva MG, Averina AE, Soboleva OA, Badun GA (2017) Radionuclide and tensiometry approaches to studying lysozyme behaviors in water-ionic liquid systems. Mendeleev Communications 27:296–298CrossRefGoogle Scholar
  34. 34.
    Vashishat R, Chabba S, Mahajan RK (2017) Surface active ionic liquid induced conformational transition in aqueous medium of hemoglobin. RSC Adv 7:13041–13052CrossRefGoogle Scholar
  35. 35.
    Smirnova SV, Torocheshnikova II, Formanovsky AA, Pletnev IV (2004) Solvent extraction of amino acids into a room temperature ionic liquid with dicyclohexano-18-crown-6. Anal Bioanal Chem 378:1369–1375CrossRefPubMedGoogle Scholar
  36. 36.
    Gómez-Guillén MC, Giménez B, López-Caballero ME, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25:1813–1827CrossRefGoogle Scholar
  37. 37.
    Griffiths PC, Roe JA, Bales BL, Pitt AR, Howe AM (2000) Fluorescence probe studies of gelatin-sodium dodecyl sulfate interactions. Langmuir 16:8248–8254CrossRefGoogle Scholar
  38. 38.
    Mitra D, Bhattacharya SC, Moulik SP (2008) Physicochemical studies on the interaction of gelatin with cationic surfactants alkyltrimethylammonium bromides (ATABs) with special focus on the behavior of the hexadecyl homologue. J Phys Chem B 112:6609–6619CrossRefPubMedGoogle Scholar
  39. 39.
    Saxena A, Antony T, Bohidar HB (1998) Dynamic light scattering study of gelatin-surfactant interactions. J Phys Chem B 102:5063–5068CrossRefGoogle Scholar
  40. 40.
    Wu D, Xu GY, Feng YJ, Li YM (2007) Aggregation behaviors of gelatin with cationic gemini surfactant at air/water interface. Int J Biol Macromol 40:345–350CrossRefPubMedGoogle Scholar
  41. 41.
    Ao MQ, Xu GY, Kang WL, Meng LW, Gong HJ, Zhou T (2011) Surface rheological behavior of gelatin/ionic liquid-type imidazolium gemini surfactant mixed systems. Soft Matter 7:1199–1206CrossRefGoogle Scholar
  42. 42.
    Singh T, Boral S, Bohidar HB, Kumar A (2010) Interaction of gelatin with room temperature ionic liquids: a detailed physicochemical study. J Phys Chem B 114:8441–8448CrossRefPubMedGoogle Scholar
  43. 43.
    Singh G, Singh G, Kang TS (2016) Effect of alkyl chain functionalization of ionic liquid surfactants on the complexation and self-assembling behavior of polyampholyte gelatin in aqueous medium. Phys Chem Chem Phys 18:25993–26009CrossRefPubMedGoogle Scholar
  44. 44.
    Li QP, Xu B, Wang Y, Zhuang LH, Wang Q, Li C, Xu XQ, Wang GW (2017) Effect of cationic structure of ionic liquids on dissolution and regeneration of white hide powder. Fibers Polymers 18:1512–1522CrossRefGoogle Scholar
  45. 45.
    Li QP, Xu B, Xu XQ, Zhuang LH, Wang Q, Wang GW (2017) Dissolution and interaction of white hide powder in [Etmim][C12H25SO4]. J Molecular Liquids 241:974–983CrossRefGoogle Scholar
  46. 46.
    Hassan SRE, Mutelet F, Bouroukba M (2015) Experimental and theoretical study of carbohydrate-ionic liquid interactions. Carbohydr Polym 127:316–324CrossRefGoogle Scholar
  47. 47.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomennenberg C, Dapprich S, Daniels AD, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision B.01, Gaussian, Inc., WallingfordGoogle Scholar
  48. 48.
    Wang WJ, Sung W, Ao MQ, Anderson NA, Vaknin D, Kim D (2013) Halide ions effects on surface excess of long chain ionic liquids water solutions. J Phys Chem B 117(44):13884–13892CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Food Science and Light IndustryNanjing Tech UniversityNanjingChina
  2. 2.College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
  3. 3.College of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjingChina

Personalised recommendations