Colloid and Polymer Science

, Volume 297, Issue 4, pp 493–502 | Cite as

Thermoreversible gelation and self-assembly behavior of dibenzylidene sorbitol in ternary solvent mixtures

  • Jerin John
  • Kurniawan Ardhianto
  • Purushothaman Nandagopalan
  • Seung Wook BaekEmail author
Original Contribution


The self-assembly behavior of 1,3:2,4-dibenzylidene-D-sorbitol (DBS) in ternary solvents has been systematically investigated for the use of kerosene gel in the aerospace propulsion. DBS forms a yield viscoelastic gels in a wide range of kerosene/hexanol/DMSO solvent concentrations despite the fact that DBS is incapable of gelling kerosene fuel. The gelation behavior of DBS in the solvent mixture is predicted using the Hansen solubility parameters. The polar parameter (δP) and hydrogen bonding (δH) parameter lie in the range of 1.96 ≤ δP ≤ 4.30 J0.5cm−1.5 and 3.40 ≤ δH ≤ 7.30 J0.5cm−1.5 respectively for the formation of gel in kerosene/hexanol/DMSO system. The phase transition temperature (Tf) of DBS gel is determined using temperature sweep measurement and predicted using modified Friedrich (MF) relation which is found be in close agreement with an average deviation of ± 10 °C. However, the deviation becomes larger when δP > 4.30 and δH > 7.30, in other words, with increase in the solvent polarity. As the solvent polarity or concentration of hexanol increases in the mixture, the gels exhibit a low Tf and \( {G}_{max}^{\prime } \) value because of the hindrance of self-assembling ability of DBS due to the intermolecular hydrogen bonding between DBS and solvents. The viscoelastic behavior of DBS gels is investigated using the oscillation sweep measurements and the storage modulus G is found to be higher than the loss modulus G for larger stress amplitude and frequency, indicating a solid-like nature of the gels. Furthermore, the microstructure analysis shows the presence of 3D nano-fibrillar morphology, which further depends on the solvent polarity. Microstructure changes from ‘rope-like’ fiber aggregate (Hex100; CH = 88 wt%) to a ‘web-like’ structures (Hex25; CH = 25 wt%), when the CH is decreased in the solvent mixture.


Kerosene gel Dibenzylidene sorbitol (DBS) Nanofibrils Viscoelastic Gel fuel 


Funding information

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2014R1A2A2A01007347). Mr. Kurniawan Ardhianto was provided scholarship in his study from Indonesian Endowment Fund for Education (LPDP). Dr. Purushothaman Nandagoplan would like to thnak his present affilation School of Aeronautical Sciences, Hindustan Institute of Technology and Science, Chennai, India. Dr. Jerin John would like to thank Dr. Gi Su Park, Assistant Professor, Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea for his extensive support of this research work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Okesola BO, Vieira VM, Cornwell DJ, Whitelaw NK, Smith DK (2015) 1, 3: 2, 4-Dibenzylidene-D-sorbitol (DBS) and its derivatives–efficient, versatile and industrially-relevant low-molecular-weight gelators with over 100 years of history and a bright future. Soft Matter 11(24):4768–4787. CrossRefPubMedGoogle Scholar
  2. 2.
    Hirst AR, Escuder B, Miravet JF, Smith DK (2008) High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew Chem Int Ed 47(42):8002–8018CrossRefGoogle Scholar
  3. 3.
    Dawn A, Shiraki T, Haraguchi S, Tamaru SI, Shinkai S (2011) What kind of “soft materials” can we design from molecular gels? Chemistry–An Asian J 6(2):266–282CrossRefGoogle Scholar
  4. 4.
    Banerjee S, Das RK, Maitra U (2009) Supramolecular gels ‘in action’. J Mater Chem 19(37):6649–6687. CrossRefGoogle Scholar
  5. 5.
    Natan B, Rahimi S (2002) The status of gel propellants in year 2000. Int J Energetic Mater Chem Propul 5(1–6):172–194. CrossRefGoogle Scholar
  6. 6.
    Anggarwal R, Patel IK, Sharma PB, Thirumalvalavan (2015) A comprehensive study on gelled propellants. Int J Res Eng Technol 4(9):2321–7308Google Scholar
  7. 7.
    John J, Nandagopalan P, Baek SW, Miglani A (2017) Rheology of solid-like ethanol fuel for hybrid rockets: effect of type and concentration of gellants. Fuel 209:96–108. CrossRefGoogle Scholar
  8. 8.
    Miglani A, Nandagopalan P, John J, Baek SW (2017) Oscillatory bursting of gel fuel droplets in a reacting environment. Sci Rep 7(1):3088. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nandagopalan P, John J, Baek SW, Miglani A, Ardhianto K (2018) Shear-flow rheology and viscoelastic instabilities of ethanol gel fuels. Exp Thermal Fluid Sci 99:181–189. CrossRefGoogle Scholar
  10. 10.
    Rahimi S, Peretz A, Natan B (2007) On shear rheology of gel propellants. Propellants, Explosives, Pyrotechnics 32(2):165–174CrossRefGoogle Scholar
  11. 11.
    Wilder EA, Hall CK, Khan SA, Spontak RJ (2003) Effects of composition and matrix polarity on network development in organogels of poly (ethylene glycol) and dibenzylidene sorbitol. Langmuir 19(15):6004–6013. CrossRefGoogle Scholar
  12. 12.
    Santos PS, Abiad MG, Carignano MA, Campanella OH (2012) Viscoelastic properties of dibenzylidene sorbitol (DBS) physical gels at high frequencies. Rheol Acta 51(1):3–11. CrossRefGoogle Scholar
  13. 13.
    Mercurio DJ, Spontak RJ (2001) Morphological characteristics of 1, 3: 2, 4-dibenzylidene sorbitol/poly (propylene glycol) organogels. J Phys Chem B 105(11):2091–2098. CrossRefGoogle Scholar
  14. 14.
    Perilla JE, Lee BJ, Jana SC (2010) Rheological investigation of interactions between sorbitol and polyhedral oligomeric silsesquioxane in development of nanocomposites of isotactic polypropylene. J Rheol 54(4):761–779. CrossRefGoogle Scholar
  15. 15.
    Meunier M J (1891) Sur les composés que la mannite et la sorbite forment avec les aldéhydes. Ann Chim Phys 22:412Google Scholar
  16. 16.
    Yamasaki S, Tsutsumi H (1995) The dependence of the polarity of solvents on 1, 3: 2, 4-Di-O-benzylidene-D-sorbitol gel. Bull Chem Soc Jpn 68(1):123–127. CrossRefGoogle Scholar
  17. 17.
    Yamasaki S, Ohashi Y, Tsutsumi H, Tsujii K (1995) The aggregated higher-structure of 1, 3: 2, 4-di-O-benzylidene-D-sorbitol in organic gels. Bull Chem Soc Jpn 68(1):146–151. CrossRefGoogle Scholar
  18. 18.
    Watase M, Nakatani Y, Itagaki H (1999) On the origin of the formation and stability of physical gels of di-O-benzylidene-D-sorbitol. J Phys Chem B 103(13):2366–2373. CrossRefGoogle Scholar
  19. 19.
    Wilder EA, Spontak RJ, Hall CK (2003) The molecular structure and intermolecular interactions of 1, 3: 2, 4-dibenzylidene-D-sorbitol. Mol Phys 101(19):3017–3027. CrossRefGoogle Scholar
  20. 20.
    Li J, Fan K, Guan X, Yu Y, Song J (2014) Self-assembly mechanism of 1, 3: 2, 4-Di (3, 4-dichlorobenzylidene)-d-sorbitol and control of the supramolecular chirality. Langmuir 30(44):13422–13429. CrossRefPubMedGoogle Scholar
  21. 21.
    Lan Y, Corradini MG, Liu X, May TE, Borondics F, Weiss RG, Rogers MA (2014) Comparing and correlating solubility parameters governing the self-assembly of molecular gels using 1, 3: 2, 4-dibenzylidene sorbitol as the gelator. Langmuir 30(47):14128–14142. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lai WC, Huang PH (2017) Self-assembly behaviors of dibenzylidene sorbitol hybrid organogels with inorganic silica. Soft Matter 13(17):3107–3115. CrossRefPubMedGoogle Scholar
  23. 23.
    Mercurio DJ, Khan SA, Spontak RJ (2001) Dynamic rheological behavior of DBS-induced poly (propylene glycol) physical gels. Rheol Acta 40(1):30–38. CrossRefGoogle Scholar
  24. 24.
    Watase M, Itagaki H (1998) Thermal and rheological properties of physical gels formed from benzylidene-D-sorbitol derivatives. Bull Chem Soc Jpn 71(6):1457–1466. CrossRefGoogle Scholar
  25. 25.
    Yamasaki S, Tsutsumi H (1994) Microscopic studies of 1, 3: 2, 4-di-O-benzylidene-D-sorbitol in ethylene glycol. Bull Chem Soc Jpn 67(4):906–911. CrossRefGoogle Scholar
  26. 26.
    Diehn KK, Oh H, Hashemipour R, Weiss RG, Raghavan SR (2014) Insights into organogelation and its kinetics from Hansen solubility parameters. Toward a priori predictions of molecular gelation. Soft Matter 10(15):2632–2640. CrossRefPubMedGoogle Scholar
  27. 27.
    Hansen CM (2007) Hansen solubility parameters: a user's handbook. CRC press.
  28. 28.
    Lai WC (2011) Thermal behavior and crystal structure of poly (l-lactic acid) with 1, 3: 2, 4-Dibenzylidene-d-sorbitol. J Phys Chem B 115(38):11029–11037. CrossRefPubMedGoogle Scholar
  29. 29.
    Frässdorf W, Fahrländer M, Fuchs K, Friedrich C (2003) Thermorheological properties of self-assembled dibenzylidene sorbitol structures in various polymer matrices: determination and prediction of characteristic temperatures. J Rheol 47(6):1445–1454. CrossRefGoogle Scholar
  30. 30.
    Oh H, Yaraghi N, Raghavan SR (2015) Gelation of oil upon contact with water: a bioinspired scheme for the self-repair of oil leaks from underwater tubes. Langmuir 31(19):5259–5264. CrossRefPubMedGoogle Scholar
  31. 31.
    Fahrländer M, Fuchs K, Friedrich C (2000) Rheological properties of dibenzylidene sorbitol networks in poly (propylene oxide) matrices. J Rheol 44(5):1103–1119. CrossRefGoogle Scholar
  32. 32.
    Kavanagh GM, Ross-Murphy SB (1998) Rheological characterisation of polymer gels. Prog Polym Sci 23(3):533–562. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jerin John
    • 1
  • Kurniawan Ardhianto
    • 1
  • Purushothaman Nandagopalan
    • 1
    • 2
  • Seung Wook Baek
    • 1
    Email author
  1. 1.Department of Aerospace Engineering, School of Mechanical and Aerospace EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
  2. 2.Department of Aeronautical EngineeringHindustan Institute of Technology and ScienceChennaiIndia

Personalised recommendations