Tailoring PNIPAM hydrogels for large temperature-triggered changes in mechanical properties
Abstract
N-isopropylacrylamide (NIPAM)-based hydrogel films are used for touch-controlled applications, where the temperature-induced change in the mechanical properties is utilized to create tactile feedback. N,N′-methylenebisacrylamide (BIS) and poly(ethylene glycol)diacrylate (PEGDA) are used as cross-linkers to study the influence of their size and concentration on the viscoelastic properties in a temperature-controlled rheology setup. The changes in water content between swollen and collapsed state of the hydrogel samples increase with decreasing cross-linking density and increasing size of the cross-linker resulting in bigger meshes in the network. The difference in the viscoelastic properties of the hydrogels increases with increasing deswelling ratio and is highest for the P(NIPAM-PEGDA) hydrogels with low cross-linking density with a 50-fold increase in the storage modulus. The deswelling ratio of these P(NIPAM-PEGDA) hydrogels is up to five times higher compared to the P(NIPAM-BIS) hydrogels of the same cross-linking density. The mesh sizes are estimated from the mechanical properties.
Keywords
PNIPAM hydrogel film BIS PEGDA Elasticity Swelling behaviourNotes
Acknowledgements
Benjamin von Lospichl and Sarah Schatte are thanked for support with the rheology measurements, and Marc Griffel from the mass spectrometry analytic centre of the Institute of Chemistry at TU Berlin is acknowledged for his service.
Funding information
The authors thank the Deutsche Forschungsgemeinschaft (KL1165/15-1) for financial support.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
Supplementary material
References
- 1.Haq MA, Su Y, Wang D (2017) . Mater Sci Eng C 70:842. https://doi.org/10.1016/j.msec.2016.09.081 CrossRefGoogle Scholar
- 2.Miruchna V, Walter R, Lindlbauer D, Lehmann M, von Klitzing R, Müller J (2015) .. In: Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, UIST ’15, https://doi.org/10.1145/2807442.2807487
- 3.Kim CC, Lee HH, Oh KH, Sun JY (2016) . Science 353:682. https://doi.org/10.1126/science.aaf8810 CrossRefGoogle Scholar
- 4.Shibayama M, Tanaka T (1993) . Adv Polym Sci 109:1. https://doi.org/10.1007/3-540-56791-7-1 CrossRefGoogle Scholar
- 5.Ashraf S, Park H, Park H, Lee SH (2016) . Macromol Res 24:297. https://doi.org/10.1007/s13233-016-4052-2 CrossRefGoogle Scholar
- 6.Ahmed EM (2015) . J Adv Res 6:105. https://doi.org/10.1016/j.jare.2013.07.006 CrossRefGoogle Scholar
- 7.Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J (2015) . Nanomaterials 5:2054. https://doi.org/10.3390/nano5042054 CrossRefGoogle Scholar
- 8.Varghese S, Elisseeff JH (2006) . Adv Polym Sci 203:95. https://doi.org/10.1007/12-072 CrossRefGoogle Scholar
- 9.Fänger C, Wack H, Ulbricht M (2006) . Macromol Biosci 6:393. https://doi.org/10.1002/mabi.200600027 CrossRefGoogle Scholar
- 10.Son KH, Lee JW (2016) . Materials 9:1. https://doi.org/10.3390/ma9100854 CrossRefGoogle Scholar
- 11.Nayak S, Lyon LA (2005) . Angew Chem Int Ed 44:7688. https://doi.org/10.1002/anie.200501321 CrossRefGoogle Scholar
- 12.Xia LW, Xie R, Ju XJ, Wang W, Chen Q, Chu LY (2013) . Nat Commun 4:2226. https://doi.org/10.1038/ncomms3226 CrossRefGoogle Scholar
- 13.Matzelle TR, Geuskens G, Kruse N (2003) . Macromolecules 36:2926. https://doi.org/10.1021/ma021719p CrossRefGoogle Scholar
- 14.Burmistrova A, Richter M, Eisele M, Üzüm C, von Klitzing R (2011) . Polymers 3:1575. https://doi.org/10.3390/polym3041575 CrossRefGoogle Scholar
- 15.Backes S, Krause P, Tabaka W, Witt MU, von Klitzing R (2017) . Langmuir 33:14269. https://doi.org/10.1021/acs.langmuir.7b02903. https://doi.org/10.1021/acs. CrossRefGoogle Scholar
- 16.Di Lorenzo F, Hellwig J, von Klitzing R, Seiffert S (2015) . ACS Macro Lett 4:698. https://doi.org/10.1021/acsmacrolett.5b00228 CrossRefGoogle Scholar
- 17.Adrus N, Ulbricht M (2013) . React Funct Polym 73:141. https://doi.org/10.1016/j.reactfunctpolym.2012.08.015 CrossRefGoogle Scholar
- 18.Puleo GL, Zulli F, Povanelli M, Giordano M, Mazzolai B, Beccai L, Andreozzi L (2013) . React Funct Polym 73:1306. https://doi.org/10.1016/j.reactfunctpolym.2013.07.004 CrossRefGoogle Scholar
- 19.Klatzky R, Pawluk D, Peer A (2013) . Proc IEEE 101:2081. https://doi.org/10.1109/JPROC.2013.2248691 Google Scholar
- 20.Arendt-Nielsen L, Chen AC (2003) . Neurophysiol Clin = Clin Neurophysiol 33:259. https://doi.org/10.1016/j.neucli.2003.10.005 CrossRefGoogle Scholar
- 21.Kato N, Sakai Y, Shibata S (2003) . Macromolecules 36:961. https://doi.org/10.1021/ma0214198 CrossRefGoogle Scholar
- 22.Grillet AM, Wyatt N, Gloe LM (2012) Polymer gel rheology and adhesion. https://doi.org/10.5772/36975
- 23.Park TG, Hoffman AS (1994) . J Appl Polym Sci 52:85. https://doi.org/10.1002/app.1994.070520110 CrossRefGoogle Scholar
- 24.Ebara M, Kotsuchibashi Y, Uto K, Aoyagi T, Kim YJ, Narain R, Idota N, Hoffman JM (2014) Smart hydrogels. https://doi.org/10.1007/978-4-431-54400-5-2
- 25.Anseth KS, Bowman CN, Brannon-Peppas L (1996) . Biomaterials 17:1647. https://doi.org/10.1016/0142-9612(96)87644-7 CrossRefGoogle Scholar
- 26.Jensen M, Bach A, Hassager O, Skov A (2009) . Int J Adhes Adhes 29:687CrossRefGoogle Scholar
- 27.Calvet D, Wong JY, Giasson S (2004) . Macromolecules 37:7762. https://doi.org/10.1021/ma049072r CrossRefGoogle Scholar
- 28.Pritz T (1998) . J Sound Vib 214:83. https://doi.org/10.1006/jsvi.1998.1534. https://doi.org/10.1006/jsvi. CrossRefGoogle Scholar
- 29.Aangenendt FJ, Mattsson J, Ellenbroek WG, Wyss HM (2017) . Phys Rev Appl 8:014003. https://doi.org/10.1103/PhysRevApplied.8.014003 CrossRefGoogle Scholar
- 30.Schmidt S, Zeiser M, Hellweg T, Duschl C, Fery A, Möhwald H (2010) . Adv Funct Mater 20:3235. https://doi.org/10.1002/adfm.201000730 CrossRefGoogle Scholar
- 31.Fernandes PAL, Schmidt S, Zeiser M, Fery A, Hellweg T (2010) . Soft Matter 6:3455. https://doi.org/10.1039/c0sm00275e CrossRefGoogle Scholar