Advertisement

Colloid and Polymer Science

, Volume 297, Issue 4, pp 623–631 | Cite as

Investigation about validity of the Derjaguin approximation for electrostatic interactions for a sphere-sphere system

  • Shiqi ZhouEmail author
Original Contribution
  • 92 Downloads

Abstract

Validity of the Derjaguin approximation for sphere-sphere electrostatic interactions is investigated by explicitly determining the interactions between two spherical colloids using classical density functional theory (CDFT) solved in bispherical coordinates. The validity rules are summarized as follows. (i) For 1:1 type electrolyte, the Derjaguin approximation is effective for colloid sphere having a diameter down to three times the ion diameter only if the bulk concentration is higher than 0.1 M. (ii) With presence of higher-valence counter-ion, the threshold value bulk concentration rises, and increasing the colloid sphere diameter can lower greatly the threshold value bulk concentration. Encouragingly, over the valid parameter region of the Derjaguin approximation a like-charge attraction can be reproduced accurately. (iii) Both too low and too high surface charge strengths contribute to lower the quality of the Derjaguin approximation; increasing the medium permittivity or system temperature improves the accuracy of the Derjaguin approximation. (iv) Based on the mechanism analysis on the above observations, it is concluded that what matters in determining the validity of the Derjaguin approximation is the potential range of the pure inter-surface electrostatic interactions and the local Debye length rather than the bulk Debye length. Besides, the different expressivity of the influencing factors causing the effective inter-surface electrostatic interactions at different conditions determines the behavior the Derjaguin approximation deviates from the full CDFT calculations.

Keywords

Derjaguin approximation Electrostatic interactions Sphere-sphere system 

Notes

Acknowledgments

The author would like to thank genuinely the anonymous reviewers for the valuable comments which help in improving the work.

Source of funding

This project is supported by the National Natural Science Foundation of China (Grants 21373274 and 21673299).

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.

References

  1. 1.
    Valadez-Perez NE, Benavides AL, Schoell-Paschinger E, Castaneda-Priego R (2012). J Chem Phys 137:084905CrossRefGoogle Scholar
  2. 2.
    Piechowiak MA, Videcoq A, Ferrando R, Bochicchio D, Pagnoux C, Rossignol F (2012). PhysChemChemPhys 14:1431Google Scholar
  3. 3.
    Prestipino S, Munao G, Costa D, Pellicane G, Caccamo C (2017). J Chem Phys 147:144902CrossRefGoogle Scholar
  4. 4.
    Rovigatti L, Bianco V, Tavares JM, Sciortino F (2017). J Chem Phys 146:041103CrossRefGoogle Scholar
  5. 5.
    Jehannin M, Charton S, Corso B, Moehwald H, Riegler H, Zemb T (2017). Colloid Polym Sci 295:1817CrossRefGoogle Scholar
  6. 6.
    Ohshima H (2017). Colloid Polym Sci 295:543CrossRefGoogle Scholar
  7. 7.
    Lyulin SV (2017). Chem Phys Lett 667:296CrossRefGoogle Scholar
  8. 8.
    Huang Y, Yamaguchi A, Pham TD, Kobayashi M (2018). Colloid Polym Sci 296:145CrossRefGoogle Scholar
  9. 9.
    Harshe YM, Lattuada M (2012). Langmuir 28:283CrossRefGoogle Scholar
  10. 10.
    Colberg PH, Kapral R (2017). J Chem Phys 147:064910CrossRefGoogle Scholar
  11. 11.
    Semeraro EF, Dattani R, Narayanan T (2018). J Chem Phys 148:014904CrossRefGoogle Scholar
  12. 12.
    Gaspard P (2017) J Stat Mech-Theory E paper ID/:024003Google Scholar
  13. 13.
    Adamczyk Z, Weronski P (1999). Adv Colloid Interf Sci 83:137CrossRefGoogle Scholar
  14. 14.
    Shen CY, Li BG, Wang C, Huang YF, Jin Y (2011). Vadose Zone J 10:1071CrossRefGoogle Scholar
  15. 15.
    Masciopinto C, Visino F (2017). Water Res 126:240CrossRefGoogle Scholar
  16. 16.
    Galindo-Murillo R, Ruiz-Azuara L, Moreno-Esparza R, Cortes-Guzman F (2012). PhysChemChemPhys 14:15539Google Scholar
  17. 17.
    Minh DDL (2012). J Chem Phys 137:104106CrossRefGoogle Scholar
  18. 18.
    Pandey RB, Jacobs DJ, Farmer BL (2017). J Chem Phys 146:195101CrossRefGoogle Scholar
  19. 19.
    Molina R et al (2012). Nucleic Acids Res 40:6936CrossRefGoogle Scholar
  20. 20.
    Niranjani G, Murugan R (2016) J Stat Mech-Theory E Paper ID/:053501Google Scholar
  21. 21.
    Erbas A, de la Cruz MO, Marko JF (2018). Phys Rev E 97:022405CrossRefGoogle Scholar
  22. 22.
    Antonietta M (2001). Int J Mol Med 8:S32Google Scholar
  23. 23.
    Ukmar T, Gaberscek M, Merzel F, Godec A (2011). PhysChemChemPhys 13:15311Google Scholar
  24. 24.
    Rathee VS, Zervoudakis AJ, Sidky H, Sikora BJ, Whitmer JK (2018). J Chem Phys 148:114901CrossRefGoogle Scholar
  25. 25.
    Wang JH, Bratko D, Luzar A (2011). J Stat Phys 145:253CrossRefGoogle Scholar
  26. 26.
    Groenewald F, Esterhuysen C, Dillen J (2012). Theor Chem Accounts 131:1281CrossRefGoogle Scholar
  27. 27.
    Songolzadeh R, Moghadasi J (2017). Colloid Polym Sci 295:145CrossRefGoogle Scholar
  28. 28.
    Goto K, Sakata S, Moritani K, Inui N (2017). Physica A 466:511CrossRefGoogle Scholar
  29. 29.
    Benavides AL, Portillo MA, Abascal JLF, Vega C (2017). Mol Phys 115:1301CrossRefGoogle Scholar
  30. 30.
    Derjaguin BH (1934). Kolloid Z 69:155CrossRefGoogle Scholar
  31. 31.
    Blocki J, Randrup J, Swiatecki WJ, Tsang CF (1977). Ann Phys – N Y 427:105Google Scholar
  32. 32.
    Hans-Jürgen Butt KG, Kappl M (2003) Physics and chemistry of interfaces. Wiley-VCH Verlag & Co. KGaA,Google Scholar
  33. 33.
    Israelachvili JN (1998) Intermolecular and Surface Forces. Academic, LondonGoogle Scholar
  34. 34.
    Parsegian VA, der Waals V (2006) Forces. Cambridge University Press, CambridgeGoogle Scholar
  35. 35.
    Hsu J-P, Kuo Y-C (1997). J Colloid Interface Sci 185:530CrossRefGoogle Scholar
  36. 36.
    Hsu J-P, Liu B-T (1998). J Phys Chem B 102:334CrossRefGoogle Scholar
  37. 37.
    Hsu J-P, Liu B-T (1999). J Colloid Interface Sci 217:219CrossRefGoogle Scholar
  38. 38.
    Schiller P, Krüger S, Wahab M, Mögel H-J (2011). Langmuir 27:10429CrossRefGoogle Scholar
  39. 39.
    Shen CY, Wang F, Li BG, Jin Y, Wang LP, Huang YF (2012). Langmuir 28:14681CrossRefGoogle Scholar
  40. 40.
    Ohshima H (2017). Colloid Polym Sci 295:289CrossRefGoogle Scholar
  41. 41.
    Wennerstrom H (2017). PhysChemChemPhys 19:23849Google Scholar
  42. 42.
    Ether DS, Rosa FSS, Tibaduiza DM, Pires LB, Decca RS, Maia PAM (2018). Phys Rev E 97:022611CrossRefGoogle Scholar
  43. 43.
    Torres-Diaz MA, Bevan (2017). Langmuir 33:4356CrossRefGoogle Scholar
  44. 44.
    Todd BA, Eppell SJ (2004) Probing the Limits of the Derjaguin Approximation with Scanning Force Microscopy, 4897. Langmuir 20:4892CrossRefGoogle Scholar
  45. 45.
    Rentsch S, Pericet-Camara R, Papastavrou G, Borkovec M (2006). PhysChemChemPhys 8:2531Google Scholar
  46. 46.
    Carnie SL, Chan DYC, Gunning JS (1994). Langmuir 10:2993CrossRefGoogle Scholar
  47. 47.
    Sader E, Carnie SL, Chan DYC (1995). J Colloid Interface Sci 171:46CrossRefGoogle Scholar
  48. 48.
    Stankovich, Carnie SL (1999). J Colloid Interface Sci 329:216Google Scholar
  49. 49.
    Gotzelmann B, Evans R, Dietrich S (1998) Depletion forces in fluids, 6800. Phys Rev E 57:6785CrossRefGoogle Scholar
  50. 50.
    Forsman J, Woodward CE (2010) Limitations of the Derjaguin Approximation and the Lorentz−Berthelot Mixing Rule, 4558. Langmuir 26:4555CrossRefGoogle Scholar
  51. 51.
    Quesada-Perez E, Gonzalez-Tovar A, Martin-Molina, Lozada-Cassou M, Hidalgo-Alvarez R (2003). ChemPhysChem 4:235CrossRefGoogle Scholar
  52. 52.
    Jimenez-Angeles F, Odriozola G, Lozada-Cassou M (2006). J Chem Phys 124:134902CrossRefGoogle Scholar
  53. 53.
    Ghanbarian S, Rottler J (2013). J Chem Phys 138:084901CrossRefGoogle Scholar
  54. 54.
    Shavlov AV, Dzhumandzhi VA (2016). Phys Plasmas 23:103703CrossRefGoogle Scholar
  55. 55.
    Buyukdagli S (2017). Phys Rev E 95:022502CrossRefGoogle Scholar
  56. 56.
    Hansen JP, McDonald IR (2006) Theory of simple liquids3rd edn. Academic, LondonGoogle Scholar
  57. 57.
    Zhou S (2018). Physica A 512:1260CrossRefGoogle Scholar
  58. 58.
    Zhou S, Solana JR (2018). Physica A 493:342CrossRefGoogle Scholar
  59. 59.
    Valiev GN, Chuev J (2018) Stat. Mech.-Theory E, Paper ID/:093201Google Scholar
  60. 60.
    Zhou S, Solana JR (2018). Mol Phys 116:491CrossRefGoogle Scholar
  61. 61.
    Patrykiejew A (2017) J Stat Mech-Theory E, Paper ID/:123208Google Scholar
  62. 62.
    Zhou S (2018) J Stat Mech-Theory E, Paper ID/:103203Google Scholar
  63. 63.
    Gouin H, Muracchini A, Ruggeri T (2018). Phys Rev E 97:062152CrossRefGoogle Scholar
  64. 64.
    Zhou S (2011) J Stat Mech-Theory E Paper ID/:P05023Google Scholar
  65. 65.
    Fantoni R (2018) J Stat Mech-Theory E, Paper ID/:043103Google Scholar
  66. 66.
    Zhou S (2011) J Stat Mech-Theory E Paper ID/:P09001Google Scholar
  67. 67.
    Henderson D (1992) Fundamentals of inhomogeneous fluids. Marcel Dekker, New YorkGoogle Scholar
  68. 68.
    B. Modak, C. N. Patra, S. K. Ghosh, and J. Vijayasundar, Mol Phys 109, 639(2011)Google Scholar
  69. 69.
    Zhou S, Zhang M (2017). J Phys Chem Solids 103:123CrossRefGoogle Scholar
  70. 70.
    Zhou S, Lamperski S, Zydorczak M (2014) Properties of a planar electric double layer under extreme conditions investigated by classical density functional theory and Monte Carlo simulations. J Chem Phys 141:064701CrossRefGoogle Scholar
  71. 71.
    Zhou S, Lamperski S, Sokołowska M (2017) J Stat Mech-Theory E, Paper ID/:073207Google Scholar
  72. 72.
    Zhou S (2013) Novel anomalies for like-charged attraction between curved surfaces and formulation of a hydrogen bonding style mechanism. AIP Adv 3:032109CrossRefGoogle Scholar
  73. 73.
    Zhou S (2015). Phys Rev E 92:052317CrossRefGoogle Scholar
  74. 74.
    Zhou S (2015) J Stat Mech-Theory E Paper ID/:P11030Google Scholar
  75. 75.
    Zhou S (2016). J Phys Chem Solids 89:53CrossRefGoogle Scholar
  76. 76.
    Zhou S (2017) Effective Electrostatic Interactions Between Two Overall Neutral Surfaces with Quenched Charge Heterogeneity Over Atomic Length Scale, 1037. J Stat Phys 169:1019CrossRefGoogle Scholar
  77. 77.
    Zhou S (2017). J Phys Chem Solids 110:274CrossRefGoogle Scholar
  78. 78.
    Zhou S (2018) Wetting Transition of Nonpolar Neutral Molecule System on a Neutral and Atomic Length Scale Roughness Substrate, 998. J Stat Phys 170:979CrossRefGoogle Scholar
  79. 79.
    Zhou S (2011) Enhanced KR-Fundamental Measure Functional for Inhomogeneous Binary and Ternary Hard Sphere Mixtures, 58. Commun Theor Phys 55:46CrossRefGoogle Scholar
  80. 80.
    Zhou S (2014) Effects of discreteness of surface charges on the effective electrostatic interactions. J Chem Phys 140:234704CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and ElectronicsCentral South UniversityChangshaChina

Personalised recommendations