Colloid and Polymer Science

, Volume 297, Issue 2, pp 285–296 | Cite as

Temperature-responsive star-shaped poly(2-ethyl-2-oxazoline) and poly(2-isopropyl-2-oxazoline) with central thiacalix[4]arene fragments: structure and properties in solutions

  • A. A. Lezov
  • A. S. Gubarev
  • A. N. Podsevalnikova
  • A. S. Senchukova
  • E. V. Lebedeva
  • M. M. Dudkina
  • A. V. Tenkovtsev
  • T. N. Nekrasova
  • L. N. Andreeva
  • R. Yu. Smyslov
  • Yu. E. Gorshkova
  • G. P. Kopitsa
  • A. Rǎdulescu
  • V. Pipich
  • N. V. TsvetkovEmail author
Original Contribution


Temperature-responsive star-shaped poly(2-ethyl-2-oxazoline) (star-PETOX) and poly(2-isopropyl-2-oxazoline) (star-PIPOX) with arms grafted to the lower rim of thiacalix[4]arene were studied in solutions by viscometry, sedimentation velocity, light scattering, and small-angle neutron scattering. The experiments were carried out in water and tetrahydrofuran solutions. It was revealed that in tetrahydrofuran, the studied polymers were present only as individual molecules, while in aqueous solutions, in addition to individual molecules, large polymer aggregates were found. Molecular characteristics of the star-PETOX and star-PIPOX samples were estimated; their behavior in tetrahydrofuran and water was studied over a wide temperature range. It was established that a cloud point of the aqueous solution of star-PETOX (67 °C) is higher than that of a solution of star-PIPOX (35 °C). Comparison of the data obtained by dynamic light scattering and small-angle neutron scattering turned out to be fruitful in revealing all the structural levels of the organization of star-PETOX and star-PIPOX in aqueous solutions. They include the level of the individual macromolecules and the level of supramolecular organization with a star-like architecture.

Graphical Abstract


Star-shaped polyoxazolines Thiacalix[4]arene Molecular properties SANS DLS AUC 



G.P. Kopitsa is grateful to the Department of Physics and Reactor Engineering of the St. Petersburg Institute of Nuclear Physics of the Scientific and Technical Center “Kurchatov Institute” for providing heavy water.

Funding information

A.A. Lezov, A.S. Gubarev, A.N. Podsevalnikova, A.S. Senchukova, E.V. Lebedeva, N.V. Tsvetkov are grateful for the support by a grant from the Russian Science Foundation (project no. 16-13-10148) for study of molecular properties of star-PETOX and star-PIPOX in aqueous and THF solutions. Yu.E. Gorshkova is grateful for JINR-Romania grant No. 321, item 15 from 21.05.2018 for AFM study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2018_4458_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1268 kb)


  1. 1.
    de la Rosa VR (2014) Poly(2-oxazoline)s as materials for biomedical applications. J Mater Sci Mater Med 25:1211–1225. CrossRefGoogle Scholar
  2. 2.
    Lorson T, Lübtow MM, Wegener E, Haider MS, Borova S, Nahm D, Jordan R, Sokolski-Papkov M, Kabanov AV, Luxenhofer R (2018) Poly(2-oxazoline)s based biomaterials: a comprehensive and critical update. Biomaterials 178:204–280. CrossRefGoogle Scholar
  3. 3.
    Glassner M, Vergaelen M, Hoogenboom R (2017) Poly(2-oxazoline)s: a comprehensive overview of polymer structures and their physical properties. Polym Int 67:32–45. CrossRefGoogle Scholar
  4. 4.
    Jerca VV, Lava K, Verbraeken B, Hoogenboom R (2016) Poly(2-cycloalkyl-2-oxazoline)s: high melting temperature polymers solely based on Debye and Keesom van der Waals interactions. Polym Chem 7:1309–1322. CrossRefGoogle Scholar
  5. 5.
    Bauer M, Lautenschlaeger C, Kempe K, Tauhardt L, Schubert US, Fischer D (2012) Poly(2-ethyl-2-oxazoline) as alternative for the stealth polymer poly(ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility. Macromol Biosci 12:986–998. CrossRefGoogle Scholar
  6. 6.
    Yang Q, Lai SK (2015) Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 7:655–677. Google Scholar
  7. 7.
    Dargaville TR, Park J-R, Hoogenboom R (2018) Poly(2-oxazoline) hydrogels: state-of-the-art and emerging applications. Macromol Biosci 18:1800070. CrossRefGoogle Scholar
  8. 8.
    Zhang N, Luxenhofer R, Jordan R (2012) Thermoresponsive poly(2-oxazoline) molecular brushes by living ionic polymerization: kinetic investigations of pendant chain grafting and cloud point modulation by backbone and side chain length variation. Macromol Chem Phys 213:973–981. CrossRefGoogle Scholar
  9. 9.
    Morgese G, Ramakrishna SN, Simic R, Zenobi-Wong M, Benetti EM (2018) Hairy and slippery polyoxazoline-based copolymers on model and cartilage surfaces. Biomacromolecules 19:680–690. CrossRefGoogle Scholar
  10. 10.
    Morgese G, Verbraeken B, Ramakrishna SN, Gombert Y, Cavalli E, Rosenboom JG, Zenobi-Wong M, Spencer ND, Hoogenboom R, Benetti EM (2018) Chemical design of non-ionic polymer brushes as biointerfaces: poly(2-oxazine)s outperform both poly(2-oxazoline)s and PEG. Angew Chem Int Ed 57:11667–11672. CrossRefGoogle Scholar
  11. 11.
    Rossegger E, Schenk V, Wiesbrock F et al (2013) Design strategies for functionalized poly(2-oxazoline)s and derived materials. Polymers 5:956–1011. CrossRefGoogle Scholar
  12. 12.
    Grube M, Leiske MN, Schubert US, Nischang I (2018) POx as an alternative to PEG? A hydrodynamic and light scattering study. Macromolecules 51:1905–1916. CrossRefGoogle Scholar
  13. 13.
    Gubarev AS, Monnery BD, Lezov AA, Sedlacek O, Tsvetkov NV, Hoogenboom R, Filippov SK (2018) Conformational properties of biocompatible poly(2-ethyl-2-oxazoline)s in phosphate buffered saline. Polym Chem 9:2232–2237. CrossRefGoogle Scholar
  14. 14.
    Kobayashi S, Uyama H, Narita Y, Ishiyama J (1992) Novel multifunctional initiators for polymerization of 2-oxazolines. Macromolecules 25:3232–3236. CrossRefGoogle Scholar
  15. 15.
    Jerca VV, Nicolescu FA, Vasilescu DS, Vuluga DM (2011) Synthesis of a new oxazoline macromonomer for dispersion polymerization. Polym Bull 66:785–796. CrossRefGoogle Scholar
  16. 16.
    Schubert US, Heller M (2001) Metallo-supramolecular initiators for the preparation of novel functional architectures. Chem Eur J 7:5252–5259.<5252::AID-CHEM5252>3.0.CO;2-9 CrossRefGoogle Scholar
  17. 17.
    Hoogenboom R, Fijten MWM, Kickelbick G, Schubert US (2010) Synthesis and crystal structures of multifunctional tosylates as basis for star-shaped poly(2-ethyl-2-oxazoline)s. Beilstein J Org Chem 6:773–783. CrossRefGoogle Scholar
  18. 18.
    Tenkovtsev AV, Amirova AI, Filippov AP (2018) Star-shaped poly(2-alkyl-2-oxazolines): synthesis and properties. Temperature-responsive polymers. Wiley, pp 67–92Google Scholar
  19. 19.
    Kurlykin MP, Bursian AE, Dudkina MM, Ten’kovtsev AV (2015) Synthesis of star-shaped polymers based on 2-alkyl-2-oxazoline with a calix[8]arene central core and the study of their heat-sensitive properties. Fibre Chem 47:291–297. CrossRefGoogle Scholar
  20. 20.
    Witte H, Seeliger W (1974) Cyclische Imidsäureester aus Nitrilen und Aminoalkoholen. Justus Liebigs Ann Chemie 1974:996–1009. CrossRefGoogle Scholar
  21. 21.
    Kumagai H, Hasegawa M, Miyanari S, Sugawa Y, Sato Y, Hori T, Ueda S, Kamiyama H, Miyano S (1997) Facile synthesis of p-tert-butylthiacalix[4]arene by the reaction of p-tert-butylphenol with elemental sulfur in the presence of a base. Tetrahedron Lett 38:3971–3972. CrossRefGoogle Scholar
  22. 22.
    Kurlykin MP, Dudkina MM, Ten’kovtsev AV (2018) Star-shaped thermosensitive poly(2 ethyl-2-oxazines) with the calixarene core. Polym Sci Ser B 60:752–756. Google Scholar
  23. 23.
    Viegas TX, Bentley MD, Harris JM, Fang Z, Yoon K, Dizman B, Weimer R, Mero A, Pasut G, Veronese FM (2011) Polyoxazoline: chemistry, properties, and applications in drug delivery. Bioconjug Chem 22:976–986. CrossRefGoogle Scholar
  24. 24.
    Tsvetkov VN, Eskin VE (1971) Structure of macromolecules in solution. National Lending Library for Science and technologyGoogle Scholar
  25. 25.
    Huggins ML (1942) The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration. J Am Chem Soc 64:2716–2718. CrossRefGoogle Scholar
  26. 26.
    Pamies R, Hernández Cifre JG, del Carmen López Martínez M, García de la Torre J (2008) Determination of intrinsic viscosities of macromolecules and nanoparticles. Comparison of single-point and dilution procedures. Colloid Polym Sci 286:1223–1231. CrossRefGoogle Scholar
  27. 27.
    Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J 78:1606–1619CrossRefGoogle Scholar
  28. 28.
    Provencher SW (1979) Inverse problems in polymer characterization: direct analysis of polydispersity with photon correlation spectroscopy. Die Makromolekulare Chemie 180:201–209. CrossRefGoogle Scholar
  29. 29.
    Provencher SW (1982) CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun 27:229–242. CrossRefGoogle Scholar
  30. 30.
    Pavlov GM, Perevyazko IY, Okatova OV, Schubert US (2011) Conformation parameters of linear macromolecules from velocity sedimentation and other hydrodynamic methods. Methods 54:124–135. CrossRefGoogle Scholar
  31. 31.
    Kratky O, Leopold H, Stabinger H (1973) The determination of the partial specific volume of proteins by the mechanical oscillator technique. Methods Enzymol 27:98–110. CrossRefGoogle Scholar
  32. 32.
    Pike ER (1974) Photon correlation and light beating spectroscopy, 1st ed. Springer USGoogle Scholar
  33. 33.
    Schärtl W (2007) Light scattering from polymer solutions and nanoparticle dispersions, 1st ed. Springer-Verlag, BerlinGoogle Scholar
  34. 34.
    Berne BJ, Pecora R (1976) Dynamic light scattering, with application to chemistry, biology and physics. WileyGoogle Scholar
  35. 35.
    Tsvetkov VN (1989) Rigid-chain polymers: hydrodynamic and optical properties in solution. Consultants BureauGoogle Scholar
  36. 36.
    Kuklin AI, Islamov AK, Gordeliy VI (2005) Scientific reviews: two-detector system for small-angle neutron scattering instrument. Neutron News 16:16–18. CrossRefGoogle Scholar
  37. 37.
  38. 38.
    Ostanevich YM (1988) Time-of-flight small-angle scattering spectrometers on pulsed neutron sources. Makromolekulare Chemie Macromolecular Symposia 15:91–103. CrossRefGoogle Scholar
  39. 39.
  40. 40.
    Radulescu A, Pipich V, Frielinghaus H, Appavou M-S (2012) KWS-2, the high intensity / wide Q -range small-angle neutron diffractometer for soft-matter and biology at FRM II. J Phys Conf Ser 351:012026. CrossRefGoogle Scholar
  41. 41.
    Radulescu A, Kentzinger E, Stellbrink J, Dohmen L, Alefeld B, Rücker U, Heiderich M, Schwahn D, Brückel T, Richter D (2005) KWS-3: the new (very) small-angle neutron scattering instrument based on focusing-mirror optics. Neutron News 16:18–21. CrossRefGoogle Scholar
  42. 42.
    Goerigk G, Varga Z (2011) Comprehensive upgrade of the high-resolution small-angle neutron scattering instrument KWS-3 at FRM II. J Appl Crystallogr 44:337–342. CrossRefGoogle Scholar
  43. 43.
    Wignall GD, Bates FS (1987) Absolute calibration of small-angle neutron scattering data. J Appl Crystallogr 20:28–40. CrossRefGoogle Scholar
  44. 44.
  45. 45.
    Ten’kovtsev AV, Trofimov AE, Shcherbinskaya LI (2012) Thermoresponsive star-shaped poly(2-isopropyl-2-oxazolines) based on octa-tert-butylcalix[8]arene. Polym Sci Ser B 54:142–148. CrossRefGoogle Scholar
  46. 46.
    Arnaud-Neu F, Collins EM, Deasy M, Ferguson G, Harris SJ, Kaitner B, Lough AJ, McKervey MA, Marques E (1989) Synthesis, x-ray crystal structures, and cation-binding properties of alkyl calixaryl esters and ketones, a new family of macrocyclic molecular receptors. J Am Chem Soc 111:8681–8691. CrossRefGoogle Scholar
  47. 47.
    Kudo H, Inoue H, Nishikubo T, Anada T (2006) Syntheses and refractive-indices properties of novel Octa-arms star-shaped polysulfides radiating from p-t-butylcalix[8]arene core. Polym J 38:289–297. CrossRefGoogle Scholar
  48. 48.
    Angot S, Murthy KS, Taton D, Gnanou Y (2000) Scope of the copper halide/Bipyridyl system associated with calixarene-based multihalides for the synthesis of well-defined polystyrene and poly(meth)acrylate stars. Macromolecules 33:7261–7274. CrossRefGoogle Scholar
  49. 49.
    Wang D, Russell TP (2018) Advances in atomic force microscopy for probing polymer structure and properties. Macromolecules 51:3–24. CrossRefGoogle Scholar
  50. 50.
    Bugrov AN, Zavialova AY, Smyslov RY, Anan’eva TD, Vlasova EN, Mokeev MV, Kryukov AE, Kopitsa GP, Pipich V (2018) Luminescence of Eu3+ ions in hybrid polymer-inorganic composites based on poly(methyl methacrylate) and zirconia nanoparticles. Luminescence 33:837–849. CrossRefGoogle Scholar
  51. 51.
    Velichko EV, Buyanov AL, Saprykina NN, Chetverikov YO, Duif CP, Bouwman WG, Smyslov RY (2017) High-strength bacterial cellulose–polyacrylamide hydrogels: mesostructure anisotropy as studied by spin-echo small-angle neutron scattering and cryo-SEM. Eur Polym J 88:269–279. CrossRefGoogle Scholar
  52. 52.
    Smyslov RY, Ezdakova KV, Kopitsa GP et al (2017) Morphological structure of Gluconacetobacter xylinus cellulose and cellulose-based organic-inorganic composite materials. J Phys Conf Ser 848:012017. CrossRefGoogle Scholar
  53. 53.
    Beaucage G (2012) 2.14 - Combined small-angle scattering for characterization of hierarchically structured polymer systems over nano-to-micron meter: part II theory. In: Matyjaszewski K, Möller M (eds) Polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 399–409CrossRefGoogle Scholar
  54. 54.
    Beaucage G (1995) Approximations leading to a unified exponential/power-law approach to small-angle scattering. J Appl Crystallogr 28:717–728. CrossRefGoogle Scholar
  55. 55.
    Beaucage G (1996) Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. J Appl Cryst, J Appl Crystallogr 29:134–146. CrossRefGoogle Scholar
  56. 56.
    Brumberger H (1995) Modern aspects of small-angle scattering. Springer, NetherlandsCrossRefGoogle Scholar
  57. 57.
    Setchell KDR, Kritchevsky D, Nair PP (1988) The bile acids: chemistry, physiology, and metabolism: volume 4: methods and applications. Springer USGoogle Scholar
  58. 58.
    Pich A, Richtering W (2011) Microgels by precipitation polymerization: synthesis, characterization, and functionalization. In: Pich A, Richtering W (eds) Chemical design of responsive microgels. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1–37CrossRefGoogle Scholar
  59. 59.
    Burchard W (1983) Static and dynamic light scattering from branched polymers and biopolymers. In: Light scattering from polymers. Advances in Polymer Science, vol 48. Springer, Berlin, Heidelberg, pp 1–124Google Scholar
  60. 60.
    Gelardi G, Sanson N, Nagy G, Flatt RJ (2017) Characterization of comb-shaped copolymers by multidetection SEC, DLS and SANS. Polymers 9(2).
  61. 61.
    Bloksma MM, Paulus RM, van Kuringen HPC, van der Woerdt F, Lambermont-Thijs HML, Schubert US, Hoogenboom R (2011) Thermoresponsive poly(2-oxazine)s. Macromol Rapid Commun 33:92–96. CrossRefGoogle Scholar
  62. 62.
    Luef KP, Hoogenboom R, Schubert US, Wiesbrock F (2015) Microwave-assisted cationic ring-opening polymerization of 2-oxazolines. Microwave-assisted Polymer Synthesis:183–208.
  63. 63.
    Amirova A, Tobolina A, Kirila T, Blokhin A, Razina A, Tenkovtsev A, Filippov A (2018) Influence of core configuration and arm structure on solution properties of new thermosensitive star-shaped poly(2-alkyl-2-oxazolines). Int J Polym Anal Charact 23:278–285. CrossRefGoogle Scholar
  64. 64.
    Huber S, Hutter N, Jordan R (2008) Effect of end group polarity upon the lower critical solution temperature of poly(2-isopropyl-2-oxazoline). Colloid Polym Sci 286:1653–1661. CrossRefGoogle Scholar
  65. 65.
    Huber S, Jordan R (2008) Modulation of the lower critical solution temperature of 2-alkyl-2-oxazoline copolymers. Colloid Polym Sci 286:395–402. CrossRefGoogle Scholar
  66. 66.
    Haba Y, Kojima C, Harada A, Kono K (2007) Comparison of thermosensitive properties of poly(amidoamine) dendrimers with peripheral N-isopropylamide groups and linear polymers with the same groups. Angew Chem Int Ed 46:234–237. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Lezov
    • 1
  • A. S. Gubarev
    • 1
  • A. N. Podsevalnikova
    • 1
  • A. S. Senchukova
    • 1
  • E. V. Lebedeva
    • 1
  • M. M. Dudkina
    • 2
  • A. V. Tenkovtsev
    • 2
  • T. N. Nekrasova
    • 2
  • L. N. Andreeva
    • 2
  • R. Yu. Smyslov
    • 2
    • 3
  • Yu. E. Gorshkova
    • 4
  • G. P. Kopitsa
    • 3
    • 5
  • A. Rǎdulescu
    • 6
  • V. Pipich
    • 6
  • N. V. Tsvetkov
    • 1
    Email author
  1. 1.St. Petersburg State UniversitySt. PetersburgRussian Federation
  2. 2.Institute of Macromolecular Compounds of the Russian Academy of SciencesSt. PetersburgRussian Federation
  3. 3.B.P. Konstantinov Petersburg Nuclear Physics Institute NRC KIGatchinaRussian Federation
  4. 4.Joint Institute for Nuclear ResearchDubnaRussia
  5. 5.I.V. Grebenshchikov Institute of Silicate Chemistry of RASSt. PetersburgRussia
  6. 6.Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science@MLZGarchingGermany

Personalised recommendations