Advertisement

In situ hyper-cross-linking of glycidyl methacrylate–based polyHIPEs through the amine-enriched high internal phase emulsions

  • Janja Majer
  • Ema Žagar
  • Peter Krajnc
  • Sebastijan Kovačič
Original Contribution
  • 29 Downloads

Abstract

The synthesis of glycidyl methacrylate–based polyHIPEs by free-radical polymerization in the presence of 1,8-diaminoctane or tris(2-aminoethyl)amine-enriched high internal phase emulsions is presented. This innovative “one-pot” synthetic route was developed to produce the so-called in situ hyper-cross-linked polyHIPEs without the use of any additional catalyst, cross-linker, or solvent. In situ hyper-cross-linking was performed through the amine-epoxy reaction before the gel point had been reached, resulting in the formation of the β-amino alcohol derivatives that represent cross-linking knots between the neighboring epoxy repeating units within the poly (glycidyl methacrylate) backbone. In this way, the volume of the mesopores smaller than 3 nm significantly increased. Thus, by changing the amounts of ethylene glycol dimethacrylate and amines in the HIPE templates, the porous structure and the pore volume of the hyper-cross-linked polyHIPEs were systematically altered in order to amplify the polyHIPE’s specific surface area.

Keywords

High internal phase emulsions (HIPEs) Hyper-cross-linking Glycidyl methacrylate β-Amino alcohols 

Notes

Funding information

This study received financial support from the Ministry of Higher Education, Science and Technology of the Republic of Slovenia, and the Slovenian Research Agency (Program No. P2-0145 and Program No. P2-0006).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2018_4455_MOESM1_ESM.doc (1.1 mb)
ESM 1 (DOC 1082 kb)

References

  1. 1.
    Cameron NR, Sherrington DC (1996) High internal phase emulsions (HIPEs)—structure, properties and use in polymer preparation. Adv Polym Sci 126:163–214CrossRefGoogle Scholar
  2. 2.
    Silverstein MS (2014) PolyHIPEs: recent advances in emulsion templated porous polymers. Prog Polym Sci 39:199–234CrossRefGoogle Scholar
  3. 3.
    Fontanals N, Marcé RM, Borrull F, Cormack PAG (2013) Hypercrosslinked materials: preparation, characterisation and applications. Polym Chem 6:7231–7244CrossRefGoogle Scholar
  4. 4.
    Tan L, Tan B (2017) Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chem Soc Rev 46:3322–3356CrossRefGoogle Scholar
  5. 5.
    Ahn JH, Jang JE, Oh CG, Ihm SK, Cortez J, Sherrington DC (2006) Rapid generation and control of microporosity, bimodal pore size distribution, and surface area in Davankov-type hyper-cross-linked resins. Macromolecules 39:627–632CrossRefGoogle Scholar
  6. 6.
    Macintyre FS, Sherrington DC, Tetley L (2006) Synthesis of ultrahigh surface area monodisperse porous polymer nanospheres. Macromolecules 39:5381–5384CrossRefGoogle Scholar
  7. 7.
    Schwab MG, Senkovska I, Rose M, Klein N, Koch M, Pahnke J, Jonschker G, Schmitz B, Hirscherd M, Kaskel S (2009) High surface area polyHIPEs with hierarchical pore system. Soft Matter 5:1055–1059CrossRefGoogle Scholar
  8. 8.
    Pulko I, Wall J, Krajnc P, Cameron NR (2010) Ultra-high surface area functional porous polymers by emulsion templating and hypercrosslinking: efficient nucleophilic catalyst supports. Chem Eur J 16:2350–2354CrossRefGoogle Scholar
  9. 9.
    Israel S, Gurevitch I, Silverstein MS (2015) Carbons with a hierarchical porous structure through the pyrolysis of hypercrosslinked emulsion-templated polymers. Polymer 72:453–463CrossRefGoogle Scholar
  10. 10.
    Woodward RT, Jobbe-Duval A, Marchesini S, Anthony DB, Petit C, Bismarck A (2017) Hypercrosslinked polyHIPEs as precursors to designable, hierarchically porous carbon foams. Polymer 115:146–153CrossRefGoogle Scholar
  11. 11.
    Sevsek U, Brus J, Jerabek K, Krajnc P (2014) Post polymerisation hypercrosslinking of styrene / divinylbenzene poly(HIPE)s: creating micropores within macroporous polymer. Polymer 55:410–415CrossRefGoogle Scholar
  12. 12.
    Koler A, Paljevac M, Cmager N, Iskra J, Kolar M, Krajnc P (2017) Poly(4-vinylpyridine) polyHIPEs as catalysts for cycloaddition click reaction. Polymer 126:402–407CrossRefGoogle Scholar
  13. 13.
    Slováková E, Ješelnik M, Žagar E, Zedník J, Sedláček J, Kovačič S (2014) Chain-growth insertion polymerization of 1,3-diethynylbenzene high internal phase emulsions into reactive π-conjugated foams. Macromolecules 47:4864–4869CrossRefGoogle Scholar
  14. 14.
    Yang X, Tan L, Xia L, Wood CD, Tan B (2015) Hierarchical porous polystyrene monoliths from polyHIPE. Macromol Rapid Comm 36:1553–1558CrossRefGoogle Scholar
  15. 15.
    Arda Gunay K, Theato P, Klok HA (2013) Standing on the shoulders of Hermann Staudinger: post polymerization modification from past to present. J Polym Sci Part A Polym Chem 51:1–28CrossRefGoogle Scholar
  16. 16.
    Majer J, Krajnc P (2010) Amine functionalisations of glycidyl methacrylate based polyHIPE monoliths. Macromol Symp 296:5–10CrossRefGoogle Scholar
  17. 17.
    Barbetta A, Cameron NR (2004) Morphology and surface area of emulsion-derived (polyHIPE) solid foams prepared with oil-phase soluble porogenic solvents: Span 80 as surfactant. Macromolecules 37:3188–3201CrossRefGoogle Scholar
  18. 18.
    Pahovnik D, Majer J, Žagar E, Kovačič S (2016) Synthesis of hydrogel polyHIPEs from functionalized glycidyl methacrylate. Polym Chem 7:5132–5138CrossRefGoogle Scholar
  19. 19.
    Shechter L, Wynstra J, Kurkjy RP (1956) Glycidyl ether reactions with amines. Ind Eng Chem 48:94–97CrossRefGoogle Scholar
  20. 20.
    Kim YH, Wasan DT (1996) Effect of dpartitioning on the destabilization of water-in-oil emulsions. Ind Eng Chem Res 35:1141–1149CrossRefGoogle Scholar
  21. 21.
    Zolfaghari R, Fakhrul-Razi A, Abdullah LC, SHE E, Pendashteh A (2016) Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. Sep Purif Technol 170:377–407CrossRefGoogle Scholar
  22. 22.
    Bamford CH, White EFT (1956) Tertiary amines as chain-transfer agents and their use in the synthesis of block copolymers. Trans Faraday Soc 52:716–727CrossRefGoogle Scholar
  23. 23.
    Gilbert MD, Schneider NS (1991) Mechanism of the dicyandiamine/epoxide reaction. Macromolecules 24:360–369CrossRefGoogle Scholar
  24. 24.
    Kulygin O, Silverstein MS (2007) Porous poly(2-hydroxyethyl methacrylate) hydrogels synthesized within high internal phase emulsions. Soft Matter 3:1525–1529CrossRefGoogle Scholar
  25. 25.
    Pulko I, Smrekar V, Podgornik A, Krajnc P (2011) Emulsion templated open porous membranes for protein purification. J Chromatogr A 1218:2396–2401CrossRefGoogle Scholar
  26. 26.
    Jerenec S, Šimic M, Savnik A, Podgornik A, Kolar M, Turnšek M, Krajnc P (2014) Glycidyl methacrylate and ethylhexyl acrylate based polyHIPE monoliths: morphological, mechanical and chromatographic properties. React Funct Polym 78:32–37CrossRefGoogle Scholar
  27. 27.
    Lattuada M, Del Gado E, Abete T, de Arcangelis L, Lazzari S, Diederich V, Storti G, Morbidelli M (2013) Kinetics of free-radical cross-linking polymerization: comparative experimental and numerical study. Macromolecules 46:5831–5841CrossRefGoogle Scholar
  28. 28.
    Antonietti M, Caruso RA, Göltber CG, Weissenberger MC (1999) Morphology variation of porous polymer gels by polymerization in lyotropic surfactant phases. Macromolecules 32:1383–1389CrossRefGoogle Scholar
  29. 29.
    Yan QZ, Lu GD, Zhang WF, Ma XH, Ge CC (2007) Frontal polymerization synthesis of monolithic macroporous polymers. Adv Funct Mater 17:3355–3362CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Natural Sciences and MathematicsUniversity of MariborMariborSlovenia
  2. 2.Department of Polymer Chemistry and TechnologyNational Institute of ChemistryLjubljanaSlovenia
  3. 3.Faculty of Chemistry and Chemical Engineering, PolyOrgLabUniversity of MariborMariborSlovenia

Personalised recommendations