Advertisement

Colloid and Polymer Science

, Volume 297, Issue 1, pp 95–105 | Cite as

Enhanced shear thickening of polystyrene-poly(acrylamide) and polystyrene-poly(HEMA) particles

  • Hoon Soo Son
  • Kyoung Ho Kim
  • Joo Hyun Song
  • Wonjoo Lee
  • Jun Hyeong Kim
  • Kwan Han Yoon
  • Young Sil Lee
  • Hyun-jong Paik
Original Contribution
  • 68 Downloads

Abstract

Shear thickening (ST) refers to the drastic increment of viscosity that occurs when a high shear force is applied to certain concentrated colloidal suspensions. The hydrocluster mechanism for ST indicates that inter-particle interaction is important for ST behavior. Therefore, we prepared polystyrene particles with polyacrylamide particles (PS-PAAm particles) to control inter-particle interactions. Colloidal suspensions of polystyrene-poly(2-hydroxyethyl methacrylate) (PS-PHEMA) particles in ethylene glycol were prepared and shown to exhibit strong ST behavior. The effect of PS-PAAm particles on the ST behavior of a PS-PHEMA particle colloidal suspension was investigated; ST behavior of shear thickening fluids (STFs) was controlled by doping different amounts of PS-PAAm particles. We suggested inter-particle interaction was enhanced by abundant hydrogen-bonding donor groups in PS-PAAm particles. Based on this study, the applicability of STF can be increased through the STF fabrication exhibiting desired ST behavior. Also, this study will help to understand fundamental ST mechanism.

Graphical Abstract

Keywords

Shear thickening Colloidal suspension Functionalized polymer particle Surfactant-free emulsion polymerization 

Notes

Acknowledgements

Assistance in the XPS analysis from the Korea Basic Science Institute (KBSI) Busan Center is acknowledged.

Funding information

This work was supported by the Industrial Strategic Technology Development Program (Grant Nos. 10063082 and 10070127) funded by the Ministry of Trade, Industry and Energy (MOTIE) of Korea. This research has been performed as a cooperation project of “The development of Sustainable materials technology for Eco-Automobile” and supported by the Korea Research Institute of Chemical Technology (KRICT)

References

  1. 1.
    Hoffman R (1972) Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability. Trans Soc Rheol 16(1):155–173CrossRefGoogle Scholar
  2. 2.
    Hoffman R (1974) Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. Theory and experimental tests. J Colloid Interface Sci 46(3):491–506CrossRefGoogle Scholar
  3. 3.
    Barnes H (1989) Shear-thickening (“Dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J Rheol 33(2):329–366CrossRefGoogle Scholar
  4. 4.
    Bender J, Wagner NJ (1996) Reversible shear thickening in monodisperse and bidisperse colloidal dispersions. J Rheol 40(5):899–916CrossRefGoogle Scholar
  5. 5.
    Lee YS, Wetzel ED, Wagner NJ (2003) The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid. J Mater Sci 38(13):2825–2833CrossRefGoogle Scholar
  6. 6.
    Kang TJ, Kim CY, Hong KH (2012) Rheological behavior of concentrated silica suspension and its application to soft armor. J Appl Polym Sci 124(2):1534–1541CrossRefGoogle Scholar
  7. 7.
    Srivastava A, Majumdar A, Butola BS (2011) Improving the impact resistance performance of Kevlar fabrics using silica based shear thickening fluid. Mater Sci Eng A 529:224–229CrossRefGoogle Scholar
  8. 8.
    Fischer C, Braun S, Bourban P, Michaud V, Plummer C, Manson JE (2006) Dynamic properties of sandwich structures with integrated shear-thickening fluids. Smart Mater Struct 15(5):1467–1475CrossRefGoogle Scholar
  9. 9.
    Zhang X, Li W, Gong X (2008) The rheology of shear thickening fluid (STF) and the dynamic performance of an STF-filled damper. Smart Mater Struct 17(3):035027CrossRefGoogle Scholar
  10. 10.
    Wagner NJ, Brady JF (2009) Shear thickening in colloidal dispersions. Phys Today 62(10):27–32CrossRefGoogle Scholar
  11. 11.
    Brady JF, Bossis G (1985) The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J Fluid Mech 155:105–129CrossRefGoogle Scholar
  12. 12.
    Kishbaugh A, McHugh A (1993) A rheo-optical study of shear-thickening and structure formation in polymer solutions. Part I: experimental. Rheol Acta 32(1):9–24CrossRefGoogle Scholar
  13. 13.
    Kishbaugh A, McHugh A (1993) A rheo-optical study of shear-thickening and structure formation in polymer solutions. Part II: light scattering analysis. Rheol Acta 32(2):115–131CrossRefGoogle Scholar
  14. 14.
    O'Brie VT, Mackay ME (2000) Stress components and shear thickening of concentrated hard sphere suspensions. Langmuir 16(21):7931–7938CrossRefGoogle Scholar
  15. 15.
    Maranzano BJ, Wagner NJ (2002) Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition. J Chem Phys 117(22):10291–10302CrossRefGoogle Scholar
  16. 16.
    Lee YS, Wagner NJ (2006) Rheological properties and small-angle neutron scattering of a shear thickening, nanoparticle dispersion at high shear rates. Ind Eng Chem Res 45(21):7015–7024CrossRefGoogle Scholar
  17. 17.
    Seto R, Mari R, Morris JF, Denn MM (2013) Discontinuous shear thickening of frictional hard-sphere suspensions. Phys Rev Lett 111(21):218301CrossRefGoogle Scholar
  18. 18.
    Hsu C-P, Ramakrishna SN, Zanini M, Spencer ND, Isa L (2018) Roughness-dependent tribology effects on discontinuous shear thickening. Proc Natl Acad Sci 201801066Google Scholar
  19. 19.
    Cheng X, McCoy JH, Israelachvili JN, Cohen I (2011) Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Science 333(6047):1276–1279CrossRefGoogle Scholar
  20. 20.
    Liu X-Q, Bao R-Y, Wu X-J, Yang W, Xie B-H, Yang M-B (2015) Temperature induced gelation transition of a fumed silica/PEG shear thickening fluid. RSC Adv 5(24):18367–18374CrossRefGoogle Scholar
  21. 21.
    Srivastava A, Majumdar A, Butola B (2012) Improving the impact resistance of textile structures by using shear thickening fluids: a review. Critical reviews in solid state and materials. Sciences 37(2):115–129Google Scholar
  22. 22.
    Lee B-W, Kim I-J, Kim C-G (2009) The influence of the particle size of silica on the ballistic performance of fabrics impregnated with silica colloidal suspension. J Compos Mater 43(23):2679–2698CrossRefGoogle Scholar
  23. 23.
    Olhero S, Ferreira J (2004) Influence of particle size distribution on rheology and particle packing of silica-based suspensions. Powder Technol 139(1):69–75CrossRefGoogle Scholar
  24. 24.
    Maranzano BJ, Wagner NJ (2001) The effects of inter-particle interactions and particle size on reversible shear thickening: hard-sphere colloidal dispersions. J Rheol 45(5):1205–1222CrossRefGoogle Scholar
  25. 25.
    Chu B, Brady AT, Mannhalter BD, Salem DR (2014) Effect of silica particle surface chemistry on the shear thickening behaviour of concentrated colloidal suspensions. J Phys D Appl Phys 47(33):335302CrossRefGoogle Scholar
  26. 26.
    Warren J, Offenberger S, Toghiani H, Pittman Jr CU, Lacy TE, Kundu S (2015) Effect of temperature on the shear-thickening behavior of fumed silica suspensions. ACS Appl Mater Interfaces 7(33):18650–18661CrossRefGoogle Scholar
  27. 27.
    Jiang W, Ye F, He Q, Gong X, Feng J, Lu L, Xuan S (2014) Study of the particles’ structure dependent rheological behavior for polymer nanospheres based shear thickening fluid. J Colloid Interface Sci 413:8–16CrossRefGoogle Scholar
  28. 28.
    Yang W, Wu Y, Pei X, Zhou F, Xue Q (2017) Contribution of surface chemistry to the shear thickening of silica nanoparticle suspensions. Langmuir 33(4):1037–1042CrossRefGoogle Scholar
  29. 29.
    Liu M, Jiang W, Chen Q, Wang S, Mao Y, Gong X, Leung KC-F, Tian J, Wang H, Xuan S (2016) A facile one-step method to synthesize SiO 2@ polydopamine core–shell nanospheres for shear thickening fluid. RSC Adv 6(35):29279–29287CrossRefGoogle Scholar
  30. 30.
    Son HS, Kim KH, Kim JH, Yoon KH, Lee YS, Paik H-j (2018) High-performance shear thickening of polystyrene particles with poly (HEMA). Colloid Polym Sci 296(9):1591–1598CrossRefGoogle Scholar
  31. 31.
    Dobrowolska ME, van Esch JH, Koper GJ (2013) Direct visualization of “coagulative nucleation” in surfactant-free emulsion polymerization. Langmuir 29(37):11724–11729CrossRefGoogle Scholar
  32. 32.
    Qin J, Zhang G, Shi X (2017) Study of a shear thickening fluid: the suspensions of monodisperse polystyrene microspheres in polyethylene glycol. J Dispers Sci Technol 38(7):935–942CrossRefGoogle Scholar
  33. 33.
    Brown E, Forman NA, Orellana CS, Zhang H, Maynor BW, Betts DE, DeSimone JM, Jaeger HM (2010) Generality of shear thickening in dense suspensions. Nat Mater 9(3):220–224CrossRefGoogle Scholar
  34. 34.
    Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 3(1):137–152CrossRefGoogle Scholar
  35. 35.
    Desiraju G (1998) Distinction between the weak hydrogen bond and the van der Waals interaction. Chem Commun 8:891–892Google Scholar
  36. 36.
    Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed 41(1):48–76CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hoon Soo Son
    • 1
  • Kyoung Ho Kim
    • 1
  • Joo Hyun Song
    • 1
    • 2
  • Wonjoo Lee
    • 2
  • Jun Hyeong Kim
    • 3
  • Kwan Han Yoon
    • 3
  • Young Sil Lee
    • 4
  • Hyun-jong Paik
    • 1
  1. 1.Department of Polymer Science and EngineeringPusan National UniversityBusanSouth Korea
  2. 2.Center for Chemical Industry DevelopmentKorea Research Institute of Chemical TechnologyDaejeonSouth Korea
  3. 3.Department of Chemical EngineeringKumoh National Institute of TechnologyGumiSouth Korea
  4. 4.Industry-Academic CooperationKumoh National Institute of TechnologyGumiSouth Korea

Personalised recommendations