Advertisement

Colloid and Polymer Science

, Volume 297, Issue 1, pp 107–114 | Cite as

Synthesis and characterization of SDS assistant α-alumina structures and investigation of the effect of the calcination time on the morphology

  • Sema Vural
  • Özlem Sari
Original Contribution
  • 48 Downloads

Abstract

In this paper, α-alumina structures were successfully prepared via hydrothermal synthesis supported with sodium dodecyl sulfonate anionic surfactant. The effect of the surfactant and the calcination time were investigated. The characterization of the samples calcinated at 1200 °C was performed using Raman spectroscopy, X-Ray Difraction analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy techniques. Experimental results showed that pure α-Al2O3 structures were obtained with different morphologies.

Keywords

Alumina Sodium dodecyl sulfonate Hydrothermal synthesis Morphology Calcination 

Notes

Funding information

This work is financially supported by the Necmettin Erbakan University Research Fund (Project No: BAP- 181331002).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Chandradass J, Yoon JH, Bae D-s (2008) Synthesis and characterization of zirconia doped alumina nanopowder by citrate–nitrate process. Mater Sci Eng A 473:360–364CrossRefGoogle Scholar
  2. 2.
    Sun Z-X, Zheng T-T, Bo Q-B, Du M, Forsling W (2008) Effects of calcination temperature on the pore size and wall crystalline structure of mesoporous alumina. J Colloid Interface Sci 319:247–251CrossRefGoogle Scholar
  3. 3.
    Hotta M, Kondo N, Kita H, Ohji T, Izutsu Y, Arima T, Matsumura Y (2015) Joining of alumina with an alumina–zirconia insert under low mechanical pressure. J Asian Ceramic Soc 3(1):59–63CrossRefGoogle Scholar
  4. 4.
    Zhoua W, Niu X, Min G, Song Z, Zhang J, Liua Y, Li X, Zhang J, Feng S (2009) Porous alumina nano-membranes: Soft replica molding for large area UV-nanoimprint lithography. Microelectron Eng 86(12):2375–2380CrossRefGoogle Scholar
  5. 5.
    Yang J-Z, Fang M-H, Huang Zo-H, Hu X-Z, Liu Y-G, Sun H-R, Huang J-T, Li X-C (2012) Solid particle impact erosion of alumina-based refractories at elevated temperatures. J Eur Ceram Soc 32(2):283–289CrossRefGoogle Scholar
  6. 6.
    Kir’yanov AV, Siddiki SH, Barmenkov YO, Das S, Dutta D, Dhar A, Khakhalin AV, Sholokhov EM, Il’ichev NN, Didenko SI, Paul MC (2017) Hafnia-yttria-alumina-silica based optical fibers with diminished mid-IR (> 2 μm) loss. Opt Mater Express 7(7):2511–2518CrossRefGoogle Scholar
  7. 7.
    Levin I, Brandon D (1998). J Am Ceram Soc 81:1995–2012CrossRefGoogle Scholar
  8. 8.
    Ravanchi MT, Fard MR, Fadaeerayeni S, Yaripour F (2015) Effect of calcination conditions on crystalline structure and pore size distribution for a mesoporous alumina. J Chem Eng Commun 202(4):493–499CrossRefGoogle Scholar
  9. 9.
    Dwivedi RK, Gowda G (1985) Thermal stability of aluminium oxides prepared from gel. J Mater Sci Lett 4:331–334CrossRefGoogle Scholar
  10. 10.
    Saraswati V, Rao GVN, Rao GVR (1987) Structural evolution in alumina gel. J Mater Sci 22:2529–2534CrossRefGoogle Scholar
  11. 11.
    Assih T, Ayral A, Abenoza M, Phalippou J (1988) Raman study of alumina gels. J Mater Sci 23:3326–3331CrossRefGoogle Scholar
  12. 12.
    Ozao R, Ochiai M, Yoshida H, Ichimura Y, Inada T, Therm J (2001). Anal Calorim 64:923–932CrossRefGoogle Scholar
  13. 13.
    Reid CB, Forrester JS, Goodshaw HJ, Kisi EH, Suaning GJ (2008) A study in the mechanical milling of alumina powder. Ceram Int 34(6):1551–1556CrossRefGoogle Scholar
  14. 14.
    Forrester JS, Goodshaw HJ, Kisi EH, Suaning GJ, Zobec JS (2008). J Aust Ceram Soc 44(1):47–52Google Scholar
  15. 15.
    Chou TC, Nieh TG (1991) Nucleation and concurrent anomalous grain growth of alpha-Al2O3 during gamma - alpha phase transformation. J Am Ceram Soc 74(9):2270–2279CrossRefGoogle Scholar
  16. 16.
    Varma HK, Mani TV, Damodran AD (1994) Characteristics of alumina powders prepared by spray-drying of boehmite sol. J Am Ceram Soc 77(6):1597–1600CrossRefGoogle Scholar
  17. 17.
    Lafficher R, Digne M, Salvatori F, Boualleg M, Colson D, Puel F (2017) Development of new alumina precipitation routes for catalysis applications. J Cryst Growth 468:526–530CrossRefGoogle Scholar
  18. 18.
    Mirjalili F, Hasmaliza M, Abdullah LC (2010) Size-controlled synthesis of nano α-alumina particles through the sol–gel method. Ceram Int 36:1253–1257CrossRefGoogle Scholar
  19. 19.
    Panda PK, Jaleel VA, Usha Devi S (2006) Hydrothermal synthesis of boehmite and α-alumina from Bayer’s alumina trihydrate. J Mater Sci 41(24):8386–8389CrossRefGoogle Scholar
  20. 20.
    Bhaduri S, Zhou E, Bhaduri SB (1996) Auto ignition processing of nanocrystalline α-Al2O3. Nanostruct Mater 7(5):487–496CrossRefGoogle Scholar
  21. 21.
    Li J, Pan Y, Xiang C, Ge Q, Guo J (2006) Low temperature synthesis of ultrafine α-Al2O3 powder by a simple aqueous sol–gel process. Ceram Int 32:587–591CrossRefGoogle Scholar
  22. 22.
    Vural S (2007) Formation of nanometric metal oxide sols, structural control and physicochemical characterization. Masters Dissertation, Inonu UniversityGoogle Scholar
  23. 23.
    Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and zpplication. Angew Chem Int Ed 46:1222–1244CrossRefGoogle Scholar
  24. 24.
    Behera PS, Sarkar R, Bhattacharyya S (2016) Nano alumina: a review of the powder synthesis method. Interceram-International Ceramic Review 65(1–2):10–16Google Scholar
  25. 25.
    Zhu Z, Liu H, Sun H, Yang D (2009) Surfactant assisted hydrothermal and thermal decomposition synthesis of alumina microfibers with mesoporous structure. Chem Eng J 155:925–930CrossRefGoogle Scholar
  26. 26.
    Ghanizadeh S, Bao X, Vaidhyanathan B, Binner J (2014) Synthesis of nano α-alumina powders using hydrothermal and precipitation routes: a comparative study. Ceram Int 40:1311–1319CrossRefGoogle Scholar
  27. 27.
    Khazaei A, Nazari S, Karimi G, Ghaderi E, Moradian KM, Bagherpor Z, Nazari S (2016). Int J Nanosci Nanotechnol 12(4):207–214Google Scholar
  28. 28.
    Tabesh S, Davar F, Loghman-Estarki MR (2018) Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions. J Alloys Compd 730:441–449CrossRefGoogle Scholar
  29. 29.
    Aguado J, Escola JM, Castro MC, Paredes B (2005) Sol–gel synthesis of mesostructured γ-alumina templated by cationic surfactants. Microporous Mesoporous Mater 83(1–3):181–192CrossRefGoogle Scholar
  30. 30.
    Cava S, Tebcherani SM, Souza IA, Pianaro SA, Paskocimas CA, Longo E, Varela JA (2007) Structural characterization of phase transition of Al2O3 nanopowders obtained by polymeric precursor method. Mater Chem Phys 103(55):394–399CrossRefGoogle Scholar
  31. 31.
    Gangwar J, Gupta BK, Tripathi SK, Srivastav AK (2015) Phase dependent thermal and spectroscopic responses of Al2O3nanostructures with different morphogenesis. Nanoscale 7:13313–13344CrossRefGoogle Scholar
  32. 32.
    Pezzotti G, Zhua W (2015) Resolving stress tensor components in space from polarized Raman spectra: polycrystalline alumina. Phys Chem Chem Phys 17:2608–2627CrossRefGoogle Scholar
  33. 33.
    Bawa SG, Ahmed AS, Okonkwo PC (2017). Nig J Technol 36(3):822–828Google Scholar
  34. 34.
    Zhou SX, Antonietti M, Niederberger M (2007) Low-temperature synthesis of γ-alumina nanocrystals from aluminum acetylacetonate in nonaqueous media. Small 3:763–767CrossRefGoogle Scholar
  35. 35.
    Djebaili K, Mekhalif Z, Boumaza A, Djelloul A (2015) J Spectro Article ID 868109. 16 pages.  https://doi.org/10.1155/2015/868109
  36. 36.
    Sicard L, Llewellyn PL, Patarin J, Kolenda F (2001) Investigation of the mechanism of the surfactant removal from a mesoporous alumina prepared in the presence of sodium dodecylsulfate. Micro Meso Mater 44-45:195–201CrossRefGoogle Scholar
  37. 37.
    Qu L, He C, Yang Y, He Y, Liu Z (2005) Hydrothermal synthesis of alumina nanotubes templated by anionic surfactant. Mater Lett 59:4034–4037CrossRefGoogle Scholar
  38. 38.
    Márquez-Alvarez C, Žilková N, Pérez-Pariente J (2008) Synthesis, characterization and catalytic aqpplications of organized mesoporous aluminas. Catal Rev Sci Eng 50(2):222–286CrossRefGoogle Scholar
  39. 39.
    Valange S, Guth J-L, Kolenda F, Lacombe S, Gabelica Z (2000). Microporous Mesoporous Mater 35–36:597–607CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Seydişehir AC Eng. Fac. Metal. & Materials Eng.Necmettin Erbakan UniversityKonyaTurkey
  2. 2.Institute of ScienceNecmettin Erbakan UniversityKonyaTurkey

Personalised recommendations