Advertisement

Colloid and Polymer Science

, Volume 297, Issue 1, pp 59–67 | Cite as

Morphological control of hydrothermally synthesized cobalt oxide particles using poly(vinyl pyrrolidone)

  • Xuhui Xia
  • Zhe Qiang
  • Garrett Bass
  • Matthew L. Becker
  • Bryan D. VogtEmail author
Original Contribution
  • 100 Downloads

Abstract

The hydrothermal synthesis of Co3O4 particles using cobalt nitrate as the precursor and citric acid as a weak chelating agent was modulated using poly(vinyl pyrrolidone) (PVP) to control the shape and size of the resulting particles. The molar ratio of PVP to the cobalt in the precursor solution was key to controlling the particle morphology. In the absence of PVP, large truncated cube-like particles with a bimodal size distribution (200 and 1450 nm) are formed. When the molar ratio of PVP/Co is less than ≈ 0.5, the particle size is generally invariant. As the molar ratio of PVP/Co is increased from 0.5 to nearly 2, the cubes with rounded edges are formed, but the hydrodynamic diameter decreases from nearly 1.4 μm to 800 nm at a molar ratio of 1.8. At PVP/Co > 2, there is a significant decrease in the particle size down to 142 nm at PVP/Co = 3.5 and the shape becomes spherical, but the particles remain crystalline, characteristic of Co3O4. The size of Co3O4 particles was also determined using scanning electron microscopy. This size is consistent with the particle size obtained from dynamic light scattering. A competitive growth mechanism between free cobalt ions and PVP-bound cobalt ions in the solution was proposed to explain the influence of PVP on the size and shape of the Co3O4 particles. Due to heavy metal specificity for the binding with PVP and the crystal space group for metal oxides, the evolution in particle shape is not universal with no apparent change in the shape obtained over a similar PVP concentration range for iron oxide.

Graphical abstract

Keywords

Cobalt oxide Hydrothermal synthesis Shape control 

Notes

Acknowledgements

We want to thank Thomas Quick for his help with the XRD measurements. This work was partially supported by the National Science Foundation under Grant No. CBET-1510612. MLB acknowledges support from the W. Gerald Austen Endowed Chair in Polymer Science and Polymer Engineering via the Knight Foundation. Acknowledgment is made to the donors of the American Chemical Society Petroleum Research Fund for the partial support of this research under award no. 53739-ND7.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2018_4434_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1190 kb)

References

  1. 1.
    Tolbert SH, Herhold AB, Brus LE, Alivisatos AP (1996) Pressure-induced structural transformations in Si nanocrystals: surface and shape effects. Phys Rev Lett 76(23):4384–4387CrossRefGoogle Scholar
  2. 2.
    Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000) Shape control of CdSe nanocrystals. Nature 404(6773):59–61CrossRefGoogle Scholar
  3. 3.
    Xia Y, Xia X, Peng H-C (2015) Shape-controlled synthesis of colloidal metal nanocrystals: thermodynamic versus kinetic products. J Am Chem Soc 137(25):7947–7966CrossRefGoogle Scholar
  4. 4.
    Chen J, Lim B, Lee EP, Xia Y (2009) Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 4(1):81–95CrossRefGoogle Scholar
  5. 5.
    Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16CrossRefGoogle Scholar
  6. 6.
    Eckhardt B, Ortel E, Polte J, Bernsmeier D, Gorke O, Strasser P, Kraehnert R (2012) Micelle-templated mesoporous films of magnesium carbonate and magnesium oxide. Adv Mater 24(23):3115–3119CrossRefGoogle Scholar
  7. 7.
    Bhaway SM, Qiang Z, Xia Y, Xia X, Lee B, Yager KG, Zhang L, Kisslinger K, Chen Y-M, Liu K, Zhu Y, Vogt BD (2017) Operando grazing incidence small-angle X-ray scattering/X-ray diffraction of model ordered mesoporous lithium-ion battery anodes. ACS Nano 11(2):1443–1454CrossRefGoogle Scholar
  8. 8.
    Carbone L, Nobile C, De Giorgi M, Sala FD, Morello G, Pompa P, Hytch M, Snoeck E, Fiore A, Franchini IR (2007) Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett 7(10):2942–2950CrossRefGoogle Scholar
  9. 9.
    Lewis DW, Willock DJ, Catlow CRA, Thomas JM, Hutchings GJ (1996) De novo design of structure-directing agents for the synthesis of microporous solids. Nature 382(6592):604–606CrossRefGoogle Scholar
  10. 10.
    Chiu C-Y, Li Y, Ruan L, Ye X, Murray CB, Huang Y (2011) Platinum nanocrystals selectively shaped using facet-specific peptide sequences. Nat Chem 3(5):393–399CrossRefGoogle Scholar
  11. 11.
    Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5−40 nm diameter gold nanoparticles. Langmuir 17(22):6782–6786CrossRefGoogle Scholar
  12. 12.
    Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179CrossRefGoogle Scholar
  13. 13.
    Lu G, Li S, Guo Z, Farha OK, Hauser BG, Qi X, Wang Y, Wang X, Han S, Liu X (2012) Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat Chem 4(4):310–316CrossRefGoogle Scholar
  14. 14.
    Ding X, Kan C, Mo B, Ke S, Cong B, Xu L, Zhu J (2012) Synthesis of polyhedral ag nanostructures by a PVP-assisted hydrothermal method. J Nanopart Res 14(8):1000–1008CrossRefGoogle Scholar
  15. 15.
    Li Z, Zhang Y (2006) Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 nanocrystals with multicolor upconversion fluorescence emission. Angew Chem Int Ed 45(46):7732–7735CrossRefGoogle Scholar
  16. 16.
    Aghazadeh M, Karimzadeh I, Ganjali MR (2018) PVP capped Mn2+ doped Fe3O4 nanoparticles: a novel preparation method, surface engineering and characterization. Mater Lett 228:137–140CrossRefGoogle Scholar
  17. 17.
    Zhang W, Tan M, Zhang P, Zhang L, Dong W, Wang Q, Ma J, Dong E, Xu S, Wang G (2018) One pot synthesis of Sb2S3 nanocrystalline films through a PVP-assisted hydrothermal process. Appl Surf Sci 455:1063–1069CrossRefGoogle Scholar
  18. 18.
    Patra S, Sengupta P, Ray A, Roy A, Das S (2018) Discrete dipole approximation for calculating optical properties of ZnO nanoparticles and ZnO-PVP composites. Ceram Int 44(12):14236–14241CrossRefGoogle Scholar
  19. 19.
    Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE (2015) Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans 44(41):17883–17905CrossRefGoogle Scholar
  20. 20.
    Ali AE-H, Shawky H, El Rehim HA, Hegazy E (2003) Synthesis and characterization of PVP/AAc copolymer hydrogel and its applications in the removal of heavy metals from aqueous solution. Eur Polym J 39(12):2337–2344CrossRefGoogle Scholar
  21. 21.
    Kang M, Zhou H, Wu D, Lv B (2016) Systematic shape evolution of Co3O4 nanocrystals from octahedra to spheres under the influence of C2O4 2− and PVP. CrystEngComm 18(48):9299–9306CrossRefGoogle Scholar
  22. 22.
    Vetter S, Haffer S, Wagner T, Tiemann M (2015) Nanostructured Co3O4 as a CO gas sensor: temperature-dependent behavior. Sensors Actuators B Chem 206:133–138CrossRefGoogle Scholar
  23. 23.
    Wang H-F, Kavanagh R, Guo Y-L, Guo Y, Lu G, Hu P (2012) Origin of extraordinarily high catalytic activity of Co3O4 and its morphological chemistry for CO oxidation at low temperature. J Catal 296:110–119CrossRefGoogle Scholar
  24. 24.
    Haffer S, Walther T, Köferstein R, Ebbinghaus SG, Tiemann M (2013) Nanostructure-related magnetic properties of various mesoporous cobalt oxide and cobalt ferrite spinel phases. J Phys Chem C 117(46):24471–24478CrossRefGoogle Scholar
  25. 25.
    Zhu S, Li J, Deng X, He C, Liu E, He F, Shi C, Zhao N (2017) Ultrathin-Nanosheet-induced synthesis of 3D transition metal oxides networks for lithium ion battery anodes. Adv Funct Mater 27(9):1605017CrossRefGoogle Scholar
  26. 26.
    Zhu T, Chen JS, Lou XW (2010) Shape-controlled synthesis of porous Co3O4 nanostructures for application in supercapacitors. J Mater Chem 20(33):7015–7020CrossRefGoogle Scholar
  27. 27.
    Yuan Z, Huang F, Feng C, Sun J, Zhou Y (2003) Synthesis and electrochemical performance of nanosized Co3O4. Mater Chem Phys 79(1):1–4CrossRefGoogle Scholar
  28. 28.
    Li Y, Tan B, Wu Y (2006) Freestanding mesoporous quasi-single-crystalline Co3O4 nanowire arrays. J Am Chem Soc 128(44):14258–14259CrossRefGoogle Scholar
  29. 29.
    Varghese B, Teo C, Zhu Y, Reddy MV, Chowdari BV, Wee ATS, Tan V, Lim CT, Sow CH (2007) Co3O4 nanostructures with different morphologies and their field-emission properties. Adv Funct Mater 17(12):1932–1939CrossRefGoogle Scholar
  30. 30.
    Scotti A, Liu W, Hyatt J, Herman E, Choi H, Kim J, Lyon L, Gasser U, Fernandez-Nieves A (2015) The CONTIN algorithm and its application to determine the size distribution of microgel suspensions. J Chem Phys 142(23):234905CrossRefGoogle Scholar
  31. 31.
    Hassan P, Kulshreshtha S (2006) Modification to the cumulant analysis of polydispersity in quasielastic light scattering data. J Colloid Interface Sci 300(2):744–748CrossRefGoogle Scholar
  32. 32.
    Holzwarth U, Gibson N (2011) The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat Nanotechnol 6(9):534–534CrossRefGoogle Scholar
  33. 33.
    Guo S, Wang E (2007) One-pot, high-yield synthesis of size-controlled gold particles with narrow size distribution. Inorg Chem 46(16):6740–6743CrossRefGoogle Scholar
  34. 34.
    Tomboc GM, Jadhav HS, Kim H (2017) PVP assisted morphology-controlled synthesis of hierarchical mesoporous ZnCo2O4 nanoparticles for high-performance pseudocapacitor. Chem Eng J 308(15):202–213CrossRefGoogle Scholar
  35. 35.
    Tang C-W, Wang C-B, Chien S-H (2008) Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochim Acta 473(1):68–73CrossRefGoogle Scholar
  36. 36.
    Kucheyev S, Baumann T, Cox C, Wang Y, Satcher Jr J, Hamza A, Bradby J (2006) Nanoengineering mechanically robust aerogels via control of foam morphology. Appl Phys Lett 89(4):041911CrossRefGoogle Scholar
  37. 37.
    Biagetti RV, Haendler HM (1966) Pyridine complexes of cobalt(II) and nickel(II) nitrates. Inorg Chem 5(3):383–386CrossRefGoogle Scholar
  38. 38.
    Kong P-C, Swaddle TW, Bayliss P (1971) The hydrothermal chemistry of some common transition metal compounds. Can J Chem 49(14):2442–2446CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xuhui Xia
    • 1
  • Zhe Qiang
    • 1
    • 2
  • Garrett Bass
    • 3
  • Matthew L. Becker
    • 3
  • Bryan D. Vogt
    • 1
    Email author
  1. 1.Department of Polymer EngineeringUniversity of AkronAkronUSA
  2. 2.Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonUSA
  3. 3.Department of Polymer ScienceUniversity of AkronAkronUSA

Personalised recommendations