Colloid and Polymer Science

, Volume 297, Issue 1, pp 13–22 | Cite as

Adsorption of poly(styrenesulfonate) onto different-sized alumina particles: characteristics and mechanisms

  • Tien Duc PhamEmail author
  • Thi Uyen Do
  • Thu Thao Pham
  • Thi Anh Huong Nguyen
  • Thi Kim Thuong Nguyen
  • Ngoc Duy Vu
  • Thanh Son LeEmail author
  • Cuong Manh VuEmail author
  • Motoyoshi Kobayashi
Original Contribution


We report the adsorption characteristics and mechanisms of a strong polyanion, poly(styrenesulfonate), PSS, onto α-Al2O3 with large size (L-Al2O3) and small size (S-Al2O3) in this paper. Some effective conditions to the adsorption of PSS onto L-Al2O3 and S-Al2O3 such as adsorption time, pH, mass ratio of PSS to α-Al2O3, and ionic strength were systematically studied. Maximum adsorption capacities of PSS onto both L-Al2O3 and S-Al2O3 were achieved with adsorption time 120 min, mass ratio of PSS to α-Al2O3 20 mg/g, and ionic strength 50 mM NaCl. The PSS adsorption onto S-Al2O3 significantly decreased with increasing pH from 4 to 9 while PSS adsorption onto L-Al2O3 decreased insignificantly in the pH range 4–9. Adsorption of PSS onto both L-Al2O3 and S-Al2O3 increased with increasing salt from 0 to 50 mM NaCl, indicating that electrostatic and none-lectrostatic interactions controlled adsorption at low ionic strength. However, adsorption of PSS was independent on the ionic strength at salt concentration higher than 50 mM. The changes in surface charge after PSS adsorption onto L-Al2O3 and S-Al2O3 were determined by zeta potential while the differences of surface functional groups before and after PSS adsorption were characterized by Fourier-transform infrared spectroscopy (FT-IR). The zeta potential as a function of the mass ratio of PSS to L-Al2O3 and S-Al2O3 agreed well with the adsorption capacity against the mass ratio. Adsorption mechanisms of PSS onto L-Al2O3 and S-Al2O3 were also discussed based on the changes in zeta potential, the differences of surface functional groups, and adsorbed amount as a function of the mass ratio of PSS to α-Al2O3.

Graphical abstract


Polyelectrolyte adsorption α-Alumina PSS Particle size 


Funding information

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.05-2016.17. Motoyoshi Kobayashi is grateful for the financial support from JSPS KAKENHI (15H04563).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Bolto B, Gregory J (2007) Organic polyelectrolytes in water treatment. Water Res 41(11):2301–2324. CrossRefGoogle Scholar
  2. 2.
    Blokhus AM, Djurhuus K (2006) Adsorption of poly(styrene sulfonate) of different molecular weights on α-alumina: effect of added sodium dodecyl sulfate. J Colloid Interface Sci 296(1):64–70. CrossRefGoogle Scholar
  3. 3.
    De Laat AWM (1995) Adsorption of water-soluble polymers onto barium titanate and its effect on colloidal stability, Doctoral Dissertation, Wagenigen UniversityGoogle Scholar
  4. 4.
    Mishael YG, Dubin PL (2005) Uptake of organic pollutants by silica−polycation-immobilized micelles for groundwater remediation. Environ Sci Technol 39(21):8475–8480. CrossRefGoogle Scholar
  5. 5.
    Pham TD, Bui TT, Nguyen VT, Bui TKV, Tran TT, Phan QC, Pham TD, Hoang TH (2018) Adsorption of polyelectrolyte onto nanosilica synthesized from rice husk: characteristics, mechanisms, and application for antibiotic removal. Polymers 10(2):220CrossRefGoogle Scholar
  6. 6.
    Popuri SR, Vijaya Y, Boddu VM, Abburi K (2009) Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads. Bioresour Technol 100:194CrossRefGoogle Scholar
  7. 7.
    Radian A, Mishael YG (2008) Characterizing and designing polycation−clay nanocomposites as a basis for imazapyr controlled release formulations. Environ Sci Technol 42(5):1511–1516. CrossRefGoogle Scholar
  8. 8.
    Adachi Y, Kobayashi A, Kobayashi M (2012) Structure of colloidal flocs in relation to the dynamic properties of unstable suspension. Int J Polym Sci 2012:14. CrossRefGoogle Scholar
  9. 9.
    Adamczyk Z, Zembala M, Michna A (2006) Polyelectrolyte adsorption layers studied by streaming potential and particle deposition. J Colloid Interface Sci 303(2):353–364. CrossRefGoogle Scholar
  10. 10.
    Hoogeveen NG, Stuart MAC, Fleer GJ (1996) Polyelectrolyte adsorption on oxides: I. Kinetics and adsorbed amounts. J Colloid Interface Sci 182(1):133–145. CrossRefGoogle Scholar
  11. 11.
    Porus M, Maroni P, Borkovec M (2012) Structure of adsorbed polyelectrolyte monolayers investigated by combining optical reflectometry and piezoelectric techniques. Langmuir 28(13):5642–5651. CrossRefGoogle Scholar
  12. 12.
    Ramachandran R, Somasundaran P (1988) Polyelectrolyte interactions at the hematite/water interface. Part 1. Colloids Surfaces 32:307–317. CrossRefGoogle Scholar
  13. 13.
    Shengcong L, Hanning X, Yuping L (2005) Adsorption of polyelectrolyte on the surface of ZnO nanoparticles and the stability of colloidal dispersions. Chin Sci Bull 50(15):1570–1575. CrossRefGoogle Scholar
  14. 14.
    Wolterink JK (2003) Polyelectrolyte behavior in solution and at interfaces. Doctoral dissertation. Wagenigen University, NetherlandsGoogle Scholar
  15. 15.
    Neivandt DJ, Gee ML, Tripp CP, Hair ML (1997) Coadsorption of poly(styrenesulfonate) and cetyltrimethylammonium bromide on silica investigated by attenuated Total reflection techniques. Langmuir 13(9):2519–2526. CrossRefGoogle Scholar
  16. 16.
    Hase M, Scheffelmaier R, Hayden S, Rivera D (2010) Quantitative in situ attenuated total internal reflection Fourier transform infrared study of the isotherms of poly(sodium 4-styrene sulfonate) adsorption to a TiO2 surface over a range of cetylpyridinium bromide monohydrate concentration. Langmuir 26(8):5534–5543. CrossRefGoogle Scholar
  17. 17.
    Sontum PC, Nöevestad A, Fahlvik AK, Gundersen HG (1996) Adsorption of poly(sodium(4)styrenesulfonate) on colloidal iron oxide particles. Int J Pharm 128(1–2):269–275. CrossRefGoogle Scholar
  18. 18.
    Esumi K, Masuda A, Otsuka H (1993) Adsorption of poly(styrenesulfonate) and ionic surfactant from their binary mixtures of alumina. Langmuir 9(1):284–287. CrossRefGoogle Scholar
  19. 19.
    Pham TD, Kobayashi M, Adachi Y (2014) Adsorption of polyanion onto large alpha alumina beads with variably charged surface. Adv Phys Chem 2014:9. CrossRefGoogle Scholar
  20. 20.
    Dasgupta J, Singh A, Kumar S, Sikder J, Chakraborty S, Curcio S, Arafat HA (2016) Poly (sodium-4-styrenesulfonate) assisted ultrafiltration for methylene blue dye removal from simulated wastewater: optimization using response surface methodology. J Environ Chem Eng 4(2):2008–2022. CrossRefGoogle Scholar
  21. 21.
    Dejeu J, Buisson L, Guth MC, Roidor C, Membrey F, Charraut D, Foissy A (2006) Early steps of the film growth mechanism in self-assembled multilayers of PAH and PSS on silica: polymer uptake, charge balance and AFM analysis. Colloids Surf A Physicochem Eng Asp 288(1–3):26–35. CrossRefGoogle Scholar
  22. 22.
    Čakara D, Kobayashi M, Skarba M, Borkovec M (2009) Protonation of silica particles in the presence of a strong cationic polyelectrolyte. Colloids Surf A Physicochem Eng Asp 339(1–3):20–25. Google Scholar
  23. 23.
    Mishael YG, Dubin PL, de Vries R, Kayitmazer AB (2007) Effect of pore size on adsorption of a polyelectrolyte to porous glass. Langmuir 23(5):2510–2516. CrossRefGoogle Scholar
  24. 24.
    Vermöhlen K, Lewandowski H, Narres HD, Schwuger MJ (2000) Adsorption of polyelectrolytes onto oxides — the influence of ionic strength, molar mass, and Ca2+ ions. Colloids Surf A Physicochem Eng Asp 163(1):45–53. CrossRefGoogle Scholar
  25. 25.
    Dao TH, Tran TT, Nguyen VR, Pham TNM, Vu CM, Pham TD (2018) Removal of antibiotic from aqueous solution using synthesized TiO2 nanoparticles: characteristics and mechanisms. Environ Earth Sci 77(10):359. CrossRefGoogle Scholar
  26. 26.
    Pham TD, Kobayashi M, Adachi Y (2015) Adsorption of anionic surfactant sodium dodecyl sulfate onto alpha alumina with small surface area. Colloid Polym Sci 293(1):217–227. CrossRefGoogle Scholar
  27. 27.
    Pham TD, Kobayashi M, Adachi Y (2015) Adsorption characteristics of anionic azo dye onto large α-alumina beads. Colloid Polym Sci 293(7):1877–1886. CrossRefGoogle Scholar
  28. 28.
    Wolterink JK, Koopal LK, Stuart MAC, Van Riemsdijk WH (2006) Surface charge regulation upon polyelectrolyte adsorption, hematite, polystyrene sulfonate, surface charge regulation: theoretical calculations and hematite-poly(styrene sulfonate) system. Colloids Surf A Physicochem Eng Asp 291(1–3):13–23. CrossRefGoogle Scholar
  29. 29.
    De Laat AWM, van den Heuvel GLT (1995) Molecular weight fractionation in the adsorption of polyacrylic acid salts onto BaTiO3. Colloids Surf A Physicochem Eng Asp 98(1–2):53–59. CrossRefGoogle Scholar
  30. 30.
    Jiang S, Xu H, Du N, Song S, Hou W (2018) Adsorption of benzyldimethyldodecylammonium bromide on silica nanoparticles in water. Colloid Polym Sci 296(2):341–353. CrossRefGoogle Scholar
  31. 31.
    Tsai WT, Lai CW, Hsien KJ (2003) Effect of particle size of activated clay on the adsorption of paraquat from aqueous solution. J Colloid Interface Sci 263(1):29–34. CrossRefGoogle Scholar
  32. 32.
    Yang L, Dadwhal M, Shahrivari Z, Ostwal M, Liu PKT, Sahimi M, Tsotsis TT (2006) Adsorption of arsenic on layered double hydroxides: effect of the particle size. Ind Eng Chem Res 45(13):4742–4751. CrossRefGoogle Scholar
  33. 33.
    Pham TD, Nguyen HH, Nguyen NV, Vu TT, Pham TNM, Doan THY, Nguyen MH, Ngo TMV (2017) Adsorptive removal of copper by using surfactant modified laterite soil. J Chem 2017:10. CrossRefGoogle Scholar
  34. 34.
    Petzold G, Schwarz S (2006) Dye removal from solutions and sludges by using polyelectrolytes and polyelectrolyte–surfactant complexes. Sep Purif Technol 51(3):318–324. CrossRefGoogle Scholar
  35. 35.
    Pham TD, Kobayashi M, Adachi Y (2013) Interfacial characterization of α-alumina with small surface area by streaming potential and chromatography. Colloids Surf A Physicochem Eng Asp 436(0):148–157. CrossRefGoogle Scholar
  36. 36.
    Delgado AV, González-Caballero F, Hunter RJ, Koopal LK, Lyklema J (2007) Measurement and interpretation of electrokinetic phenomena. J Colloid Interface Sci 309(2):194–224CrossRefGoogle Scholar
  37. 37.
    Pham TD, Do TT, Ha VL, Doan THY, Nguyen TAH, Mai TD, Kobayashi M, Adachi Y (2017) Adsorptive removal of ammonium ion from aqueous solution using surfactant-modified alumina. Environ Chem 14(5):327–337. CrossRefGoogle Scholar
  38. 38.
    Adamczyk Z, Zembala M, Warszyński P, Jachimska B (2004) Characterization of polyelectrolyte multilayers by the streaming potential method. Langmuir 20(24):10517–10525. CrossRefGoogle Scholar
  39. 39.
    Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73(1):373–380. CrossRefGoogle Scholar
  40. 40.
    Guzman E, Ritacco H, Rubio JEF, Rubio RG, Ortega F (2009) Salt-induced changes in the growth of polyelectrolyte layers of poly(diallyl-dimethylammonium chloride) and poly(4-styrene sulfonate of sodium). Soft Matter 5(10):2130–2142. CrossRefGoogle Scholar
  41. 41.
    Franks GV, Meagher L (2003) The isoelectric points of sapphire crystals and alpha-alumina powder. Colloids Surf A Physicochem Eng Asp 214(1–3):99–110CrossRefGoogle Scholar
  42. 42.
    Kobayashi M (2008) Electrophoretic mobility of latex spheres in the presence of divalent ions: experiments and modeling. Colloid Polym Sci 286(8–9):935–940. CrossRefGoogle Scholar
  43. 43.
    Yamaguchi A, Kobayashi M (2016) Quantitative evaluation of shift of slipping plane and counterion binding to lysozyme by electrophoresis method. Colloid Polym Sci 294(6):1019–1026. CrossRefGoogle Scholar
  44. 44.
    Kosmulski M (2016) Isoelectric points and points of zero charge of metal (hydr)oxides: 50 years after Parks’ review. Adv Colloid Interf Sci 238:1–61. CrossRefGoogle Scholar
  45. 45.
    Vorwerg L, Antonietti M, Tauer K (1999) Electrophoretic mobility of latex particles: effect of particle size and surface structure. Colloids Surf A Physicochem Eng Asp 150(1):129–135. CrossRefGoogle Scholar
  46. 46.
    Szilagyi I, Trefalt G, Tiraferri A, Maroni P, Borkovec M (2014) Polyelectrolyte adsorption, interparticle forces, and colloidal aggregation. Soft Matter 10(15):2479–2502. CrossRefGoogle Scholar
  47. 47.
    Moujahid EM, Inacio J, Besse J-P, Leroux F (2003) Adsorption of styrene sulfonate vs. polystyrene sulfonate on layered double hydroxides. Microporous Mesoporous Mater 57(1):37–46. CrossRefGoogle Scholar
  48. 48.
    Duman O, Tunç S, Çetinkaya A (2012) Electrokinetic and rheological properties of kaolinite in poly(diallyldimethylammonium chloride), poly(sodium 4-styrene sulfonate) and poly(vinyl alcohol) solutions. Colloids Surf A Physicochem Eng Asp 394:23–32. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tien Duc Pham
    • 1
    Email author
  • Thi Uyen Do
    • 1
  • Thu Thao Pham
    • 1
  • Thi Anh Huong Nguyen
    • 1
  • Thi Kim Thuong Nguyen
    • 1
  • Ngoc Duy Vu
    • 1
  • Thanh Son Le
    • 1
    Email author
  • Cuong Manh Vu
    • 2
    • 3
    Email author
  • Motoyoshi Kobayashi
    • 4
  1. 1.Faculty of ChemistryVNU – University of Science, Vietnam National UniversityHanoiVietnam
  2. 2.Center for Advanced Chemistry, Institute of Research and DevelopmentDuy Tan UniversityDa NangVietnam
  3. 3.Chemical DepartmentLe Quy Don Technical UniversityHanoiVietnam
  4. 4.Faculty of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations