Advertisement

Modification of Nafion membrane by polyaniline providing uniform polymer distribution throughout the membrane

  • Оlga А. Pyshkina
  • Оlga А. Novoskoltseva
  • Julia A. Zakharova
Invited Article
  • 15 Downloads

Abstract

Oxidative polymerization of aniline in the presence of Nafion membranes has been carried out in a water–isopropanol mixture after preliminary impregnation of the membrane with the monomer (aniline) in aqueous isopropanol. Uniform distribution of polyaniline (PANI) throughout whole membrane volume has been found. On the contrary, aniline polymerization in water, even after preliminary impregnation of the membrane with the monomer, has resulted in the formation of PANI thin layer only on the membrane surfaces but not inside the membrane. The polymerization in water–isopropanol mixture has not led to the change in the membrane surface properties but has induced the structural reorganization of Nafion membrane accompanied by the increase in the membrane ionic cluster size and the distance between the fluorocarbon crystallites. Modification by PANI carried out either in water or in aqueous isopropanol solution has resulted in the decrease in the membrane proton conductivity by 5–10 times.

Keywords

Membranes Nafion Modification Polyaniline Isopropanol 

Notes

Acknowledgements

The authors are grateful to Vladimir G. Sergeyev for fruitful discussions and Sergey S. Abramchuk for microscopy (TEM) studies.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104:4535–4585.  https://doi.org/10.1021/cr0207123 CrossRefPubMedGoogle Scholar
  2. 2.
    Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications. J Membr Sci 259:10–26.  https://doi.org/10.1016/j.memsci.2005.01.035
  3. 3.
    Park HS, Kim YI, Hong WH, Choi YS, Lee HK (2005) Influence of morphology on the transport properties of perfluorosulfonate ionomers/polypyrrole composite membrane. Macromolecules 38:2289–2295.  https://doi.org/10.1021/ma047650y CrossRefGoogle Scholar
  4. 4.
    Skyllas-Kazacos M, Kazacos G, Poon G, Verseema H (2010) Recent advances with UNSW vanadium-based redox flow batteries. Int J Energy Res 34:182–189.  https://doi.org/10.1002/er.1658 CrossRefGoogle Scholar
  5. 5.
    Moretto LM, Kohls T, Chovin A, Sojic N, Ugo P (2008) Epifluorescence imaging of electrochemically switchable Langmuir-Blodgett films of Nafion. Langmuir 24:6367–6374.  https://doi.org/10.1021/la703998e CrossRefPubMedGoogle Scholar
  6. 6.
    Azad UP, Canesan V (2010) Efficient sensing of nitrite by Fe (bpy)3 2+ immobilized Nafion modified electrodes. Chem Commun 46:6156–6158.  https://doi.org/10.1039/c0cc00852d CrossRefGoogle Scholar
  7. 7.
    Prifti H, Parasuraman A, Winardi S, Lim TM, Skyllas-Kazacos M (2012) Membranes for redox flow battery applications. Membranes 2:275–306.  https://doi.org/10.3390/membranes2020275 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yan XH, Wu R, Xu JB, Luo Z, Zhao TS (2016) A monolayer graphene Nafion sandwich membrane for direct methanol fuel cells. J Power Sources 311:188–194.  https://doi.org/10.1016/j.jpowsour.2016.02.030 CrossRefGoogle Scholar
  9. 9.
    Page KA, Cable KM, Moore RB (2005) Molecular origins of the thermal transitions and dynamic mechanical relaxations in perfluorosulfonate ionomers. Macromolecules 38:6472–6484.  https://doi.org/10.1021/ma0503559 CrossRefGoogle Scholar
  10. 10.
    Huang S-L, Yu H-F, Lin Y-S (2017) Modification of Nafion® membrane via a sol-gel route for vanadium redox flow energy storage battery applications. J Chem 2017:1–10.  https://doi.org/10.1155/2017/4590952 CrossRefGoogle Scholar
  11. 11.
    Muriithi B, Loy DA (2016) Proton conductivity of Nafion/ex-situ sulfonic acid-modified stöber silica nanocomposite membranes as a function of temperature, silica particles size and surface modification. Membranes 6:12–26.  https://doi.org/10.3390/membranes6010012 CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Kameche M, Xu F, Innocent C, Pourcelly G, Derriche Z (2007) Characterization of Nafion® 117 membrane modified chemically with a conducting polymer: an application to the demineralization of sodium iodide organic solutions. Sep Pur Tech 52:497–503.  https://doi.org/10.1016/j.seppur.2006.06.001 CrossRefGoogle Scholar
  13. 13.
    Boeva ZA, Sergeyev VG (2014) Soluble interpolyelectrolyte complexes prepared via template polymerization of aniline in the presence of perfluorinated persulfonic acid having mixed conductivity. RSC Adv 4(100):56677–56681.  https://doi.org/10.1039/c4ra11217b CrossRefGoogle Scholar
  14. 14.
    Gao J, Sun C, Xu L, Chen J, Wang C, Guo D, Chen H (2018) Lithiated Nafion as polymer electrolyte for solid-state lithium sulfur batteries using carbon-sulfur composite cathode. J Power Sources 382:179–189.  https://doi.org/10.1016/j.jpowsour.2018.01.063 CrossRefGoogle Scholar
  15. 15.
    Dong X, Chen L, Liu J, Haller S, Wang Y, Xia Y (2016) Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Sci Adv 2:e1501038–e1501046.  https://doi.org/10.1126/sciadv.1501038 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Stejskal J, Gilbert RG (2002) Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure Appl Chem 74(5):857–867.  https://doi.org/10.1351/pac200274050857 CrossRefGoogle Scholar
  17. 17.
    Tan S, Belanger D (2005) Characterization and transport properties of Nafion/polyaniline composite membranes. J Phys Chem B 109:23480–23490.  https://doi.org/10.1021/jp054724e CrossRefPubMedGoogle Scholar
  18. 18.
    Fazullin DD, Mavrin GV, Sokolov MP (2014) Cation-exchange membranes with polyaniline surface layer for water treatment. Am J Environ Sci 10(5):424–430.  https://doi.org/10.3844/ajessp.2014.424.430 CrossRefGoogle Scholar
  19. 19.
    Wang C-H, Chen C-C, Hsu H-C, Du H-Y, Chen C-P, Hwang J-Y, Chen LC, Shih H-C, Stejskal J, Chen KH (2009) Low methanol-permeable polyaniline/Nafion composite membrane for direct methanol fuel cells. J Power Sources 190:279–284.  https://doi.org/10.1016/j.jpowsour.2008.12.125 CrossRefGoogle Scholar
  20. 20.
    Gonzalez-Ausejo J, Cabedo L, G’amez-P’erez J, Moll’a S, Gim’enez E, Compa V (2015) Modification of Nafion membranes with polyaniline to reduce methanol permeability. J Electrochem Soc 162(14):E325–E333.  https://doi.org/10.1149/2.0521514jes CrossRefGoogle Scholar
  21. 21.
    Mokhtarian N, Ghasemi M, Daud WRW, Ismail M, Najafpour G, Alam J (2013) Improvement of microbial fuel cell performance by using Nafion polyaniline composite membranes as a separator. J Fuel Cell Sci Tech 10:041008–041013.  https://doi.org/10.1115/1.4024866 CrossRefGoogle Scholar
  22. 22.
    Barón A, Valenzuela E, Sánchez R, González-Gutiérrez AG, Sebastian PJ (2016) Charge transport improvement in Nafion membrane by simultaneous microwave synthesis and deposition of YSZ. Int J Electrochem Sci 11:8057–8066.  https://doi.org/10.20964/2016.09.46 CrossRefGoogle Scholar
  23. 23.
    Berezina NP, Kubaisy AA, Timofeev SV, Karpenko LV (2007) Template synthesis and electrotransport behavior of polymer composites based on perfluorinated membranes incorporated polyaniline. J Solid State Electrochem 11:378–389.  https://doi.org/10.1007/s10008-006-0159-2 CrossRefGoogle Scholar
  24. 24.
    Berezina NP, Kononenko NA, Filippov AN, Shkirskaya SA, Falina IV, Sycheva AA-R (2010) Electrotransport properties and morphology of MF-4SK membranes after surface modification with polyaniline. Russ J Electrochem (Engl Transl) 46(5):485–493.  https://doi.org/10.1134/S1023193510050010 CrossRefGoogle Scholar
  25. 25.
    Barthet C, Guglielmi M (1996) Mixed electronic and ionic conductors: a new route to Nafion®-doped polyaniline. J Electroanal Chem 388:35–44.  https://doi.org/10.1016/0022-0728(94)03759-V CrossRefGoogle Scholar
  26. 26.
    Barthet C, Guglielmi M (1996) Aspects of the conducting properties of Nafion®-doped polyaniline. Electrochim Acta 41(18):2791–2798.  https://doi.org/10.1016/0013-4686(96)00090-4 CrossRefGoogle Scholar
  27. 27.
    Gospodinova N, Terlemezyan L, Mokreva P, Kossev K (1993) On the mechanism of oxidative polymerization of aniline. Polymer 34(11):2434–2437.  https://doi.org/10.1016/0032-3861(93)90834-W CrossRefGoogle Scholar
  28. 28.
    Lux F (1994) Properties of electronically conductive polyaniline: a comparison between well-known literature data and some recent experimental findings. Polymer 35(14):2915–2936.  https://doi.org/10.1016/0032-3861(94)90402-2 CrossRefGoogle Scholar
  29. 29.
    Stejskal J, Kratochvíl P, Jenkins AD (1996) The formation of polyaniline and the nature of its structures. Polymer 37(2):367–369.  https://doi.org/10.1016/0032-3861(96)81113-X CrossRefGoogle Scholar
  30. 30.
    Sapurina IY, Stejskal J (2011) The effect of pH on the oxidative polymerization of aniline and the morphology and properties of products. Russ Chem Rev 79(12):1123–1143.  https://doi.org/10.1070/RC2010v079n12ABEH004140 CrossRefGoogle Scholar
  31. 31.
    Chakraborty M, Mukherjee DC, Mandal BM (2000) Dispersion polymerization of aniline in different media: a UV - visible spectroscopic and kinetic study. Langmuir 16:2482–2488.  https://doi.org/10.1021/la990943d CrossRefGoogle Scholar
  32. 32.
    Elliott JA, Hanna S, Elliott AMS, Cooley GE (2001) The swelling behaviour of perfluorinated ionomer membranes in ethanol/water mixtures. Polymer 42:2251–2253.  https://doi.org/10.1016/S0032-3861(00)00538-3 CrossRefGoogle Scholar
  33. 33.
    Zawodzinski TA, Springer TE, Davey J, Jestel R, Lopez C, Valeria J, Gottesfeld S (1993) A comparative study of water uptake by and transport through ionomeric fuel cell membranes. J Electrochem Soc 140(7):1981–1985.  https://doi.org/10.1149/1.2220749 CrossRefGoogle Scholar
  34. 34.
    Tan S, Tieu JH, Belanger D (2005) Chemical polymerization of aniline on a poly (styrenesulfonic acid) membrane: controlling the polymerization site using different oxidants. J Phys Chem B 109:14085–14092.  https://doi.org/10.1021/jp051278m CrossRefPubMedGoogle Scholar
  35. 35.
    Kondratenko MS, Karpushkin EA, Gvozdik NA, Gallyamov MO, Stevenson KJ, Sergeyev VG (2017) Influence of aminosilane precursor concentration on physicochemical properties of composite Nafion membranes for vanadium redox flow battery applications. J Power Sources 340:32–39.  https://doi.org/10.1016/j.jpowsour.2016.11.045 CrossRefGoogle Scholar
  36. 36.
    Kang ET, Neoh KG, Tan KL (1998) Polyaniline: a polymer with many interesting intrinsic redox states. Prog Polym Sci 23(2):277–324.  https://doi.org/10.1016/S0079-6700(97)00030-0 CrossRefGoogle Scholar
  37. 37.
    Socrates G (2001) Infrared and Raman characteristic group frequencies. Third Ed, John Wiley & Sons, LTD.Google Scholar
  38. 38.
    Schwenzer B, Kim S, Vijayakumar M, Yang Z, Liu J (2011) Correlation of structural differences between Nafion/polyaniline and Nafion/polypyrrole composite membranes and observed transport properties. J Membr Sci 372:11–19.  https://doi.org/10.1016/j.memsci.2011.01.025 CrossRefGoogle Scholar
  39. 39.
    Zhao B, Neoh KG, Liu FT, Kang ET (1999) Enhancement of electrical stability of polyaniline films in aqueous media by surface graft copolymerization with hydrophobic monomers. Langmuir 15:8259–8264.  https://doi.org/10.1021/la990328 CrossRefGoogle Scholar
  40. 40.
    Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185:29–39.  https://doi.org/10.1016/S0376-7388(00)00632-3 CrossRefGoogle Scholar
  41. 41.
    Affoune AM, Yamada A, Umeda M (2005) Conductivity and surface morphology of Nafion membrane in water and alcohol environments. J Power Sources 148:9–17.  https://doi.org/10.1016/j.jpowsour.2005.01.039 CrossRefGoogle Scholar
  42. 42.
    Gebel G, Lambard J (1997) Small-angle scattering study of water-swollen perfluorinated ionomer membranes. Macromolecules 30:7914–7920 S0024–9297(97)00801–2CrossRefGoogle Scholar
  43. 43.
    Choi BG, Park HS, Im HS, Hong WH (2008) Influence of oxidation state of polyaniline on physicochemical and transport properties of Nafion/polyaniline. J Membr Sci 324:102–110.  https://doi.org/10.1016/j.memsci.2008.06.061 CrossRefGoogle Scholar
  44. 44.
    Feng K, Hou L, Tang B, WuPhys P (2015) Does thermal treatment merely make a H2O-saturated Nafion membrane lose its absorbed water at high temperature? Chem Chem Phys 17:9106–9115.  https://doi.org/10.1039/c5cp00203f CrossRefGoogle Scholar
  45. 45.
    Sinha S, Bhadra S, Khastgir D (2008) Effect of dopant type on the properties of polyaniline. J Appl Polym Sci 112:3135–3140.  https://doi.org/10.1002/app.29708 CrossRefGoogle Scholar
  46. 46.
    Tsao C-S, Chang HL, Jeng U-S, Lin J-M, Lin T-L (2005) SAXS characterization of the Nafion membrane nanostructure modified by radiation cross-linkage. Polymer 46:8430–8437.  https://doi.org/10.1016/j.polymer.2005.06.010 CrossRefGoogle Scholar
  47. 47.
    Yang Z, Coutinho DH, Sulfstede R, Balkus KJ, Ferraris JP (2008) Proton conductivity of acid-doped meta-polyaniline. J Membr Sci 313:86–90.  https://doi.org/10.1016/j.memsci.2007.12.071 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Оlga А. Pyshkina
    • 1
  • Оlga А. Novoskoltseva
    • 1
  • Julia A. Zakharova
    • 1
  1. 1.Chemistry DepartmentLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations