Advertisement

Sulfonated fluorinated block copolymer containing naphthalene unit/sulfonated polyvinylidene-co-hexafluoropropylene/functionalized silicon dioxide ternary composite membrane for low-humidity fuel cell applications

  • Ae Rhan Kim
  • Jane Cathleen Gabunada
  • Dong Jin Yoo
Original Contribution
  • 20 Downloads

Abstract

A ternary composite membrane, composed of a sulfonated fluorinated block copolymer containing naphthalene unit (SFBCN), sulfonated polyvinylidene fluoride-co-hexafluoropropylene (SPVdF-HFP), and functionalized silicon dioxide (FSiO2), was fabricated via a simple solution casting method for use as a suitable proton exchange membrane in low-humidity fuel cells. The morphological and structural characterizations verify the successful formation of the ternary composite membrane. TGA and DSC analyses revealed the suitability of the materials for fuel cell applications. The increased water uptake, IEC, and proton conductivity values with increasing hydrophilicity of membranes were obtained by thorough measurements. The fabricated ternary composite membrane containing 10 wt% FSiO2 exhibited a superior proton conductivity (12.3 mS/cm) under dehydrated conditions (90 °C at 40% RH) over the Nafion 117 (7.8 mS/cm) membrane, while at 90 °C at 100% RH, it exhibited a comparable H+ conductivity (93.1 mS/cm) to Nafion 117 (112 mS/cm) membrane.

Graphical abstract

Keywords

Composite membrane Low humidity Hygroscopic filler Microphase separation Conducting pathways 

Notes

Funding

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20184030202210). The Basic Science Research Program supported this research through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (No. 2017R1A2B4005230).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sust Energ Rev 32:810–853CrossRefGoogle Scholar
  2. 2.
    Wee JH (2007) Applications of proton exchange membrane fuel cell systems. Renew Sust Energ Rev 11(8):1720–1738CrossRefGoogle Scholar
  3. 3.
    Yang C, Srinivasan S, Bocarsly AB, Tulyani S, Benziger JB (2004) A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes. J Membr Sci 237(1):145–161CrossRefGoogle Scholar
  4. 4.
    Kraytsberg A, Ein-Eli Y (2014) Review of advanced materials for proton exchange membrane fuel cells. Energy Fuel 28(12):7303–7330CrossRefGoogle Scholar
  5. 5.
    Park CH, Lee CH, Guiver MD, Lee YM (2011) Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). Prog Polym Sci 36(11):1443–1498CrossRefGoogle Scholar
  6. 6.
    Parnian MJ, Rowshanzamir S, Prasad AK, Advani SG (2018) High durability sulfonated poly (ether ether ketone)-ceria nanocomposite membranes for proton exchange membrane fuel cell applications. J Membr Sci 556:12–22CrossRefGoogle Scholar
  7. 7.
    Gao S, Xu H, Luo T, Guo Y, Li Z, Ouadah A, Zhang Y, Zhang Z, Zhu C (2017) Novel proton conducting membranes based on cross-linked sulfonated polyphosphazenes and poly(ether ether ketone). J Membr Sci 536:1–10CrossRefGoogle Scholar
  8. 8.
    Vinothkannan M, Kim AR, Gnana kumar G, Yoon JM, Yoo DJ (2017) Toward improved mechanical strength, oxidative stability and proton conductivity of an aligned quadratic hybrid (SPEEK/FPAPB/Fe3O4-FGO) membrane for application in high temperature and low humidity fuel cells. RSC Adv 7(62):39034–39048CrossRefGoogle Scholar
  9. 9.
    Jang HR, Yoo ES, Kannan R, Kim JS, Lee K, Yoo DJ (2017) Facile tailor-made enhancement in proton conductivity of sulfonated poly(ether ether ketone) by graphene oxide nanosheet for polymer electrolyte membrane fuel cell applications. Colloid Polym Sci 295(6):1059–1069CrossRefGoogle Scholar
  10. 10.
    Ahn MK, Lee B, Jang J, Min CM, Lee SB, Pak C, Lee JS (2018) Facile preparation of blend proton exchange membranes with highly sulfonated poly(arylene ether) and poly(arylene ether sulfone) bearing dense triazoles. J Membr Sci 560:58–66CrossRefGoogle Scholar
  11. 11.
    Yang Q, Li L, Lin CX, Gao XL, Zhao CH, Zhang QG, Zhu AM, Liu QL (2018) Hyperbranched poly(arylene ether ketone) anion exchange membranes for fuel cells. J Membr Sci 560:77–86CrossRefGoogle Scholar
  12. 12.
    Chen JC, Wu JA, Lee CY, Tsai MC, Chen KH (2015) Novel polyimides containing benzimidazole for temperature proton exchange membrane fuel. J Membr Sci 483:144–154CrossRefGoogle Scholar
  13. 13.
    He ML, Xu HL, Dong Y, Xiao JH, Liu P, Fu FY, Hussain S, Zhang SZ, Jing CJ, Yu Q, Zhu CJ (2014) Synthesis and characterization of sulfonated polyphosphazene-graft-polystyrene copolymers for proton exchange membranes. Chin J Polym Sci 32(2):151–162CrossRefGoogle Scholar
  14. 14.
    Kim AR, Vinothkannan M, Yoo DJ (2017) Artificially designed, low humidifying organic–inorganic (SFBC-50/FSiO2) composite membrane for electrolyte applications of fuel cells. Compos Part B Eng 130:103–118CrossRefGoogle Scholar
  15. 15.
    Baker AM, Wang L, Johnson WB, Prasad AK, Advani SG (2014) Nafion membranes reinforced with ceria-coated multiwall carbon nanotubes for improved mechanical and chemical durability in polymer electrolyte membrane fuel cells. J Phys Chem C 118(46):26796–26802CrossRefGoogle Scholar
  16. 16.
    Miyahara T, Hayano T, Matsuno S, Watanabe M, Miyatake K (2012) Sulfonated polybenzophenone/poly(arylene ether) block copolymer membranes for fuel cell applications. ACS Appl Mater Inter 4(6):2881–2884CrossRefGoogle Scholar
  17. 17.
    Higashihara T, Matsumoto K, Ueda M (2009) Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells. Polymer 50(23):5341–5357CrossRefGoogle Scholar
  18. 18.
    Oh KH, Bae I, Lee H, Kim H, Kim HT (2017) Silica-embedded hydrogel nanofiller for enhancing low humidity proton conduction of a hydrocarbon-based polymer electrolyte membrane. J Membr Sci 543:106–113CrossRefGoogle Scholar
  19. 19.
    Gnana kumar G, Kim AR, Nahm KS, Yoo DJ (2011) High proton conductivity and low fuel crossover of polyvinylidene fluoride–hexafluoro propylene–silica sulfuric acid composite membranes for direct methanol fuel cells. Curr Appl Phys 11(3):896–902CrossRefGoogle Scholar
  20. 20.
    Gnana kumar G, Manthiram A (2017) Sulfonated polyether ether ketone/strontium zirconite@TiO2 nanocomposite membranes for direct methanol fuel cells. J Mater Chem A 5(38):20497–20504CrossRefGoogle Scholar
  21. 21.
    Gnana kumar G, Shin J, Nho YC, Hwang IS, Fei G, Kim AR, Nahm KS (2010) Irradiated PVdF-HFP–tin oxide composite membranes for the applications of direct methanol fuel cells. J Membr Sci 350(1):92–100CrossRefGoogle Scholar
  22. 22.
    Vinothkannan M, Kim AR, Nahm KS, Yoo DJ (2016) Ternary hybrid (SPEEK/SPVdF-HFP/GO) based membrane electrolyte for the applications of fuel cells: profile of improved mechanical strength, thermal stability and proton conductivity. RSC Adv 6(110):108851–108863CrossRefGoogle Scholar
  23. 23.
    Kim AR, Vinothkannan M, Yoo DJ (2017) Sulfonated-fluorinated copolymer blending membranes containing SPEEK for use as the electrolyte in polymer electrolyte fuel cells (PEFC). Int J Hydrog Energy 42(7):4349–4365CrossRefGoogle Scholar
  24. 24.
    Kim AR (2016) Synthesis and characterization of di and triblock copolymers containing a naphthalene unit for polymer electrolyte membranes. Trans Korean Hydrog New Energy Soc 27(6):660–669CrossRefGoogle Scholar
  25. 25.
    Kim AR, Vinothkannan M, Kim JS, Yoo DJ (2018) Proton-conducting phosphotungstic acid/sulfonated fluorinated block copolymer composite membrane for polymer electrolyte fuel cells with reduced hydrogen permeability. Polym Bull 75(7):2779–2804CrossRefGoogle Scholar
  26. 26.
    Cama G, Mogosanu DE, Houben A, Dubruel P (2017) 3-synthetic biodegradable medical polyesters: poly-ε-caprolactone. In: Zhang X (ed) Science and principles of biodegradable and bioresorbable medical polymers, 1st edn. Woodhead Publishing, Cambridge, pp 79–105CrossRefGoogle Scholar
  27. 27.
    Korshak VV, Vasnev VA (1989) 10—Experimental methods of solution polymerization. In: Allen G, Bevington JC (eds) Comprehensive polymer science and supplements. Pergamon, Amsterdam, pp 143–165CrossRefGoogle Scholar
  28. 28.
    Velayutham P, Sahu A, Parthasarathy S (2017) A Nafion-ceria composite membrane electrolyte for reduced methanol crossover in direct methanol fuel cells. Energies 10(2):259CrossRefGoogle Scholar
  29. 29.
    Huang X, Zhang J, Wang W, Liu Y, Zhang Z, Li L, Fan W (2015) Effects of PVDF/SiO2 hybrid ultrafiltration membranes by sol–gel method for the concentration of fennel oil in herbal water extract. RSC Adv 5(24):18258–18266CrossRefGoogle Scholar
  30. 30.
    Gaylord NG (1968) Critical factors affecting chemical reactions on polymers. J Polym Sci Polym Symp 24(1):1–5Google Scholar
  31. 31.
    Kim AR, Vinothkannan M, Yoo DJ (2018) Fabrication of binary sulfonated poly ether sulfone and sulfonated polyvinylidene fluoride-co-hexafluoro propylene blend membrane as efficient electrolyte for proton exchange membrane fuel cells. Bull Kor Chem Soc 39(8):913–919CrossRefGoogle Scholar
  32. 32.
    Nechifor M (2016) Aromatic polyesters with photosensitive side chains: synthesis, characterization and properties. J Serb Chem Soc 81(6):13CrossRefGoogle Scholar
  33. 33.
    Zierkiewicz W, Michalska D, Czarnik-Matusewicz B, Rospenk M (2003) Molecular structure and infrared spectra of 4-Fluorophenol: a combined theoretical and spectroscopic study. J Phys Chem A 107(22):4547–4554CrossRefGoogle Scholar
  34. 34.
    Adjemian KT, Lee SJ, Srinivasan S, Benziger J, Bocarsly AB (2002) Silicon oxide Nafion composite membranes for proton-exchange membrane fuel cell operation at 80-140°C. J Electrochem Soc 149(3):A256–A261CrossRefGoogle Scholar
  35. 35.
    Sim LN, Majid SR, Arof AK (2012) FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt. Vibr Spectrosc 58:57–66CrossRefGoogle Scholar
  36. 36.
    Feifel SC, Lisdat F (2011) Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers. J Nanobiotechnol 9(1):59CrossRefGoogle Scholar
  37. 37.
    Kumar P, Kundu PP (2015) Coating and lamination of Nafion117 with partially sulfonated PVdF for low methanol crossover in DMFC applications. Electrochim Acta 173:124–130CrossRefGoogle Scholar
  38. 38.
    Mobinikhaledi A, Moghanian H, Pakdel S (2015) Microwave-assisted efficient synthesis of azlactone derivatives using 2-aminopyridine-functionalized sphere SiO2 nanoparticles as a reusable heterogeneous catalyst. Chin Chem Lett 26(5):557–563CrossRefGoogle Scholar
  39. 39.
    Liang Y, Ouyang J, Wang H, Wang W, Chui P, Sun K (2012) Synthesis and characterization of core–shell structured SiO2@YVO4:Yb3+,Er3+ microspheres. Appl Surf Sci 258(8):3689–3694CrossRefGoogle Scholar
  40. 40.
    Gnana kumar G, Kim AR, Nahm KS, Yoo DJ, Elizabeth R (2010) High ion and lower molecular transportation of the poly vinylidene fluoride–hexa fluoro propylene hybrid membranes for the high temperature and lower humidity direct methanol fuel cell applications. J Power Sources 195(18):5922–5928CrossRefGoogle Scholar
  41. 41.
    Solarajan AK, Murugadoss V, Angaiah S (2017) High performance electrospun PVdF-HFP/SiO2 nanocomposite membrane electrolyte for Li-ion capacitors. J Appl Polym Sci 134(32):45177CrossRefGoogle Scholar
  42. 42.
    Farrokhzad H, Kikhavani T, Monnaie F, Ashrafizadeh SN, Koeckelberghs G, Van Gerven T, Van der Bruggen B (2015) Novel composite cation exchange films based on sulfonated PVDF for electromembrane separations. J Membr Sci 474:167–174CrossRefGoogle Scholar
  43. 43.
    Pervin SA, Prabu AA, Kim KJ, Lee YT (2015) Preparation and evaluation of poly(vinylidene fluoride)-sulfonated poly(1,4-phenylene sulfide) based membranes with improved hydrophilicity. Macromol Res 23(1):86–93CrossRefGoogle Scholar
  44. 44.
    Duan Q, Ge S, Wang CY (2013) Water uptake, ionic conductivity and swelling properties of anion-exchange membrane. J Power Sources 243:773–778CrossRefGoogle Scholar
  45. 45.
    Matos BR, Goulart CA, Santiago EI, Fonseca FC (2014) Proton conductivity of perfluorosulfonate ionomers at high temperature and high relative humidity. Appl Phys Lett 104(9):091904CrossRefGoogle Scholar
  46. 46.
    Park KT, Jung UH, Choi DW, Chun K, Lee HM, Kim SH (2008) ZrO2–SiO2/Nafion® composite membrane for polymer electrolyte membrane fuel cells operation at high temperature and low humidity. J Power Sources 177(2):247–253CrossRefGoogle Scholar
  47. 47.
    Aricò AS, Baglio V, Di Blasi A, Creti P, Antonucci PL, Antonucci V (2003) Influence of the acid–base characteristics of inorganic fillers on the high temperature performance of composite membranes in direct methanol fuel cells. Solid State Ionics 161(3):251–265CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Bioenvironmental Chemistry and R&D Center for CANUTECH, Business Incubation CenterChonbuk National UniversityJeonjuRepublic of Korea
  2. 2.Graduate School, Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research CenterChonbuk National UniversityJeonjuRepublic of Korea
  3. 3.Department of Life ScienceChonbuk National UniversityJeonjuRepublic of Korea

Personalised recommendations