Advertisement

Colloid and Polymer Science

, Volume 296, Issue 11, pp 1805–1816 | Cite as

Synthesis of nanoporous organic/inorganic hybrid materials with adjustable pore size

  • Y. Qawasmi
  • P. Atanasova
  • T. Jahnke
  • Z. Burghard
  • A. Müller
  • L. Grassberger
  • R. Strey
  • J. Bill
  • T. Sottmann
Original Contribution

Abstract

Polystyrene (PS) nanofoams, prepared following the nanofoams continuity inversion of dispersions (NF-CID) principle, were utilized for the synthesis of nanoporous organic/inorganic hybrid materials. The pore size and morphology of the PS foams were found to depend on the NF-CID parameters: temperature, exposure time, and the expansion process. With this knowledge, PS foams with a pore size of 1 μm were mineralized with ZnO from a methanol precursor solution comprising zinc acetate dihydrate. Scanning electron microscopy (SEM) coupled with energy-dispersive X-ray (EDX) was used to characterize both the pure PS nanofoam and the hybrid material. The formation of a ZnO layer on the pore walls of the polymer foams was confirmed, while the general structure of the foam was retained. Uniaxial compression measurements revealed larger values of the E modulus and the yield stress for the porous PS/ZnO hybrid material compared to the pure polymer foam.

Graphical abstract

Keywords

Supercritical carbon dioxide Mineralization Polystyrene nanofoams Organic/inorganic hybrid materials Hard template 

Notes

Acknowledgements

The authors thank Herbert Metzner (Workshop, University of Cologne, Germany) as well as Boris Tschertsche and Daniel Relovsky (Workshop, University Stuttgart, Germany) for the development and maintenance of the HP cells, respectively, as well as the scientific facility Nanostrukturlabor of J. Weis and the department of J. Spatz from the Max Planck Institutes in Stuttgart, Germany for their technical support and equipment access. Furthermore, Yaseen Qawasmi is grateful to the Konrad Adenauer Stiftung for the financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Sanchez C, Belleville P, Popall M, Nicole L (2011) Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market. Chem Soc Rev 40:696–753.  https://doi.org/10.1039/c0cs00136h CrossRefPubMedGoogle Scholar
  2. 2.
    Weiner S, Dove PM (2003) An overview of biomineralization processes and the problem of the vital effect. Rev Mineral Geochem 54(1):1–29.  https://doi.org/10.2113/0540001 CrossRefGoogle Scholar
  3. 3.
    Stephens CJ, Ladden SF, Meldrum FC, Christenson HK (2010) Amorphous calcium carbonate is stabilized in confinement. Adv Funct Mater 20:2108–2115.  https://doi.org/10.1002/adfm.201000248 CrossRefGoogle Scholar
  4. 4.
    Knudsen M (1909) Eine Revision der Gleichgewichtsbedingung der Gase. Thermische Molekularströmung. Ann Phys 336:205–229CrossRefGoogle Scholar
  5. 5.
    Jelle BP, Gustavsen A, Baetens R (2010) The path to the high performance thermal building insulation materials and solutions of tomorrow. J Build Phys 34(2):99–123.  https://doi.org/10.1177/1744259110372782 CrossRefGoogle Scholar
  6. 6.
    Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741CrossRefGoogle Scholar
  7. 7.
    Reichenauer G, Heinemann U, Ebert HP (2007) Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity. Colloids Surf A Physicochem Eng Asp 300:204–210.  https://doi.org/10.1016/j.colsurfa.2007.01.020 CrossRefGoogle Scholar
  8. 8.
    Krause B, Sijbesma HJP, Mu P (2001) Bicontinuous nanoporous polymers by carbon dioxide foaming. Macromolecules 34(25):8792–8801CrossRefGoogle Scholar
  9. 9.
    Siripurapu S, Coughlan JA, Spontak RJ, Khan SA (2004) Surface constrained foaming of polymer thin films with supercritical carbon dioxide. Macromolecules 37(26):9872–9879CrossRefGoogle Scholar
  10. 10.
    Butler R, Davies CM, Cooper I (2001) Emulsion templating using high internal phase supercritical fluid emulsions. Adv Mater 13:1459–1463CrossRefGoogle Scholar
  11. 11.
    Strey R, Sottmann T, Schwan M (2008) Aufgeschäumtes Material und Herstellungs-verfahren für das aufgeschäumte Material. DE10260815B4Google Scholar
  12. 12.
    Schwan M, Kramer L, Sottmann T, Strey R (2010) Phase behaviour of propane- and scCO2-microemulsions and their prominent role for the recently proposed foaming procedure POSME (Principle of Supercritical Microemulsion Expansion). Phys Chem Chem Phys 12:6247–6252CrossRefGoogle Scholar
  13. 13.
    Strey R, Müller A (2010) Erzeugung nanodisperser Einschlüsse in einer hochviskosen Matrix. DE102010053064A1Google Scholar
  14. 14.
    Müller A (2013) Preperation of polymer nano-foams: templates, challenges, and kinetics. (PhD Thesis, University of Cologne), Cuvillier Verlag, ISBN: 978-3-95404-566-2, CologneGoogle Scholar
  15. 15.
    Müller A, Pütz Y, Oberhoffer R, Becker N, Strey R, Wiedenmann A, Sottmann T (2014) Kinetics of pressure induced structural changes in super- or near-critical CO2-microemulsions. Phys Chem Chem Phys 16:18092–18097.  https://doi.org/10.1039/C3CP53790K CrossRefPubMedGoogle Scholar
  16. 16.
    Grassberger L, Koch K, Oberhoffer R, Müller A, Klemmer HFM, Strey R (2017) Blowing agent free generation of nanoporous poly(methylmethacrylate) materials. Colloid Polym Sci 295:379–389.  https://doi.org/10.1007/s00396-017-4012-1 CrossRefGoogle Scholar
  17. 17.
    Polarz S, Neues F, van den Berg MWE, Grunert W, Khodeir L (2005) Mesosynthesis of ZnO-silica composites for methanol nanocatalysis. JACS 127(34):12028–12034.  https://doi.org/10.1021/ja0516514 CrossRefGoogle Scholar
  18. 18.
    Schroder F, Hermes S, Parala H, Hikov T, Muhler M, Fischer RA (2006) Non aqueous loading of the mesoporous siliceous MCM-48 matrix with ZnO: a comparison of solution, liquid and gas-phase infiltration using diethyl zinc as organometallic precursor. J Mater Chem 16(35):3565–3574.  https://doi.org/10.1039/B606814F CrossRefGoogle Scholar
  19. 19.
    Suryavanshi U, Iijima T, Hayashi A, Hayashi Y, Tanemura M (2012) Fabrication of ZnO nanoparticles confined in the channels of mesoporous carbon. Chem Eng J 179:388–393.  https://doi.org/10.1016/j.cej.2011.10.087 CrossRefGoogle Scholar
  20. 20.
    Shi JY, Chen J, Feng ZC, Chen T, Wang XL, Ying PL, Li C (2006) Time-resolved photoluminescence characteristics of subnanometer ZnO clusters confined in the micropores of zeolites. J Phys Chem B 110(51):25612–25618.  https://doi.org/10.1021/jp060439z CrossRefPubMedGoogle Scholar
  21. 21.
    Ceylan H, Ozgit-Akgun C, Erkal TS, Donmez I, Garifullin R, Tekinay AB, Usta H, Biyikli N, Guler MO (2013) Size-controlled conformal nanofabrication of biotemplated three-dimensional TiO2 and ZnO nanonetworks. Sci Rep 3(2306):1–7 https://www.nature.com/articles/srep02306 Google Scholar
  22. 22.
    Kovacic S, Anzlovar A, Erjavec B, Kapun G, Matsko NB, Zigon M, Zagar E, Pintar A, Slugovc C (2014) Macroporous ZnO foams by high internal phase emulsion technique: synthesis and catalytic activity. ACS Appl Mater Interfaces 6(21):19075–19081.  https://doi.org/10.1021/am5050482 CrossRefPubMedGoogle Scholar
  23. 23.
    Wang PP, Zhao J, Xuan RF, Wang Y, Zou C, Zhang ZQ, Wan YZ, Xu Y (2014) Flexible and monolithic zinc oxide bionanocomposite foams by a bacterial cellulose mediated approach for antibacterial applications. Dalton Trans 43(18):6762–6768.  https://doi.org/10.1039/c3dt52858h CrossRefPubMedGoogle Scholar
  24. 24.
    Seo BI, Shaislamov UA, Ha MH, Kim SW, Kim HK, Yang B (2007) ZnO nanotubes by template wetting process. Physica E 37:241–244.  https://doi.org/10.1016/j.physe.2006.07.025 CrossRefGoogle Scholar
  25. 25.
    Ladanov M, Algarin-Amaris P, Matthews G, Ram M, Thomas S, Kumar A, Wang J (2013) Microfluidic hydrothermal growth of ZnO nanowires over high aspect ratio microstructures. Nanotechnology 24(37):375301.  https://doi.org/10.1088/0957-4484/24/37/375301 CrossRefPubMedGoogle Scholar
  26. 26.
    Hansen FK, Ugelstad J (1982) In: Piirma I (ed) Particle formation mechanisms in emulsion polymerization. Academic Press, New York, pp 51–91Google Scholar
  27. 27.
    Landfester K (2009) Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew Chem Int Ed 48(25):4488–4507CrossRefGoogle Scholar
  28. 28.
    Antonietti M, Hentze HP (1997) Neuere Aspekte der Polymerisation in lyotropen Phasen und in Mikroemulsionen. Chem Ing Tech 69(3):369–373CrossRefGoogle Scholar
  29. 29.
    Puig JE, Rabelero M (2016) Semicontinuous microemulsion polymerization. Curr Opin Colloid Interface Sci 25:83–88.  https://doi.org/10.1016/j.cocis.2016.07.003 CrossRefGoogle Scholar
  30. 30.
    Grassberger L (2016) (PhD Thesis, University of Cologne), ISBN: 978-3-8439-2623-2Google Scholar
  31. 31.
    Shieh Y, Liu K (2002) Solubility of CO2 in glassy PMMA and PS over a wide pressure range: the effect of carbonyl groups. J Polym Res 9(2):107–113CrossRefGoogle Scholar
  32. 32.
    Condo PD, Johnston KP (1994) In situ measurement of the glass transition temperature of polymers with compressed fluid diluents. J Polym Sci B Polym Phys 32:523–533CrossRefGoogle Scholar
  33. 33.
    Ostwald W (1900) Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper. Z Phys Chem 34:495–503Google Scholar
  34. 34.
    Egelhaaf S, Olsson U, Schurtenberger P, Morris J, Wennerström H (1999) Quantitative measurements of Ostwald ripening using time-resolved small-angle neutron scattering. Phys Rev E 60:5681–5684CrossRefGoogle Scholar
  35. 35.
    Smoluchowski M (1917) Mathematical theory of the kinetics of the coagulation of colloidal solutions. Z Phys Chem 19:129–135Google Scholar
  36. 36.
    Meakin P (1991) Steady state droplet coalescence. Physica A 171:1–18.  https://doi.org/10.1016/0378-4371(91)90353-E CrossRefGoogle Scholar
  37. 37.
    Provencher SW (1982) Contin: a constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput Phys Commun 27(3):213–227CrossRefGoogle Scholar
  38. 38.
    Atanasova P, Stitz N, Sanctis S, Maurer JHM, Hoffmann RC, Eiben S, Jeske H, Schneider JJ, Bill J (2015) Genetically improved monolayer-forming tobacco mosaic viruses to generate nanostructured semiconducting bio/inorganic hybrids. Langmuir 31:3897–3903CrossRefGoogle Scholar
  39. 39.
    Lipowsky P, Hoffmann RC, Welzel U, Bill J, Aldinger F (2007) Site-selective deposition of nanostructured ZnO thin films from solutions containing polyvinylpyrrolidone. Adv Funct Mater 17:2151–2159CrossRefGoogle Scholar
  40. 40.
    Gibson LJ (2005) Biomechanics of cellular solids. J Biomech 38:377–399CrossRefGoogle Scholar
  41. 41.
    Arora KA, Lesser AJ, McCarthy TJ (1998) Compressive behavior of microcellular polystyrene foams processed in supercritical carbon dioxide. Polym Eng Sci 38(12):2055–2062CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Y. Qawasmi
    • 1
  • P. Atanasova
    • 2
  • T. Jahnke
    • 2
  • Z. Burghard
    • 2
  • A. Müller
    • 3
  • L. Grassberger
    • 3
  • R. Strey
    • 3
  • J. Bill
    • 2
  • T. Sottmann
    • 1
  1. 1.Institute of Physical ChemistryUniversity of StuttgartStuttgartGermany
  2. 2.Institute for Materials ScienceUniversity of StuttgartStuttgartGermany
  3. 3.Institute of Physical ChemistryUniversity of CologneCologneGermany

Personalised recommendations