Sol-gel-modified membranes for all-organic battery based on bis-(tert-butylphenyl)nitroxide

  • Evgeny A. Karpushkin
  • Nataliya A. Gvozdik
  • Oleg A. Levitskiy
  • Keith J. Stevenson
  • Vladimir G. Sergeyev
  • Tatiana V. MagdesievaEmail author
Invited Article


It has been shown that sol-gel modification of Nafion membrane with amino-containing silica nanoparticles followed by neutralization converting the membrane in the salt form prevents decomposition of the model redox-active compound, bis(tert-butylphenyl)nitroxide, and suppresses its crossover yet maintaining sufficient permeability of a supporting electrolyte in acetonitrile solution. Bis(tert-butylphenyl)nitroxide is stable under the operation conditions of the redox flow battery assembled with Celgard membrane.


Nanocomposites Polymer membranes Modification Diaryl nitroxide Sol-gel 



This work was financially supported by the Russian Science Foundation (project no. 16-13-10282).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Winsberg J, Hagemann T, Janoschka T, Hager MD, Schubert US (2017) Redox-flow batteries: from metals to organic redox-active materials. Angew Chem Int Ed 56:686–711. CrossRefGoogle Scholar
  2. 2.
    Leung P, Shah AA, Sanz L, Flox C, Morante JR, Xu Q, Mohamed MR, Ponce de Leon C, Walsh FC (2017) Recent developments in organic redox flow batteries: a critical review. J Power Sources 360:243–283. CrossRefGoogle Scholar
  3. 3.
    Shin SH, Yun SH, Moon SH (2013) A review of current developments in non-aqueous redox flow batteries: characterization of their membranes for design perspective. RSC Adv 3:9095–9116. CrossRefGoogle Scholar
  4. 4.
    Janoschka T, Martin N, Martin U, Friebe C, Morgenstern S, Hiller H, Hager MD, Schubert US (2015) An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 527:78–81. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kaifert AE, Bard AJ (1986) Polymer films on electrodes. 20. An ESR study of several spin probes incorporated into Nafion. J Phys Chem 90:868–873. CrossRefGoogle Scholar
  6. 6.
    Szajdzinska-Pietek E, Pilar J, Schlick S (1995) Structure and dynamics of perfluorinated ionomers in aqueous solutions and swollen membranes based on simulations of ESR spectra from spin probes. J Phys Chem 99:313–319. CrossRefGoogle Scholar
  7. 7.
    Baur JE, Wang S, Brandt MC (1996) Fast-scan voltammetry of cyclic nitroxide free radicals. Anal Chem 68:3815–3821. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Orita A, Verde MG, Sakai M, Meng YS (2016) The impact of pH on side reactions for aqueous redox flow batteries based on nitroxyl radical compounds. J Power Sources 321:126–134. CrossRefGoogle Scholar
  9. 9.
    Levitskiy OA, Eremin DB, Bogdanov AV, Magdesieva TV (2017) Twisted diarylnitroxides: an efficient route for radical stabilization. Eur J Org Chem 2017:4726–4735. CrossRefGoogle Scholar
  10. 10.
    Levitskiy OA, Sentyurin VV, Magdesieva TV (2018) Twisting of diarylnitroxides: an efficient tool for redox tuning. Electrochim Acta 260:459–467. CrossRefGoogle Scholar
  11. 11.
    Karpushkin E, Artemov M, Sergeyev V (2016) Effect of biaxial stretching on the ion-conducting properties of Nafion membranes. Mendeleev Commun 26:117–118. CrossRefGoogle Scholar
  12. 12.
    Kondratenko MS, Karpushkin EA, Gvozdik NA, Gallyamov MO, Stevenson KJ, Sergeyev VG (2017) Influence of aminosilane precursor concentration on physicochemical properties of composite Nafion membranes for vanadium redox flow battery applications. J Power Sources 340:32–39. CrossRefGoogle Scholar
  13. 13.
    Tikhonov IV, Sen’ VD, Borodin LI, Pliss EM, Golubev VA, Rusakov AI (2014) Effect of the structure of nitroxyl radicals on the kinetics of their acid-catalyzed disproportionation. J Phys Org Chem 27(2):114–120. CrossRefGoogle Scholar
  14. 14.
    Sen’ VD, Tikhonov IV, Borodin LI, Pliss EM, Golubev VA, Syroeshkin MA, Rusakov AI (2015) Kinetics and thermodynamics of reversible disproportionation–comproportionation in redox triad oxoammonium cations – nitroxyl radicals – hydroxylamines. J Phys Org Chem 28(1):17–24. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
corrected publication September/2018

Authors and Affiliations

  1. 1.Chemistry DepartmentLomonosov Moscow State UniversityMoscowRussia
  2. 2.Skolkovo Institute of Science and TechnologyMoscowRussia

Personalised recommendations