Colloid and Polymer Science

, Volume 296, Issue 9, pp 1573–1580 | Cite as

Preparation of multilayer films using the negative charge of phenylboronic acid and its response to pH change, fructose, and hydrogen peroxide

  • Yuki Oide
  • Miku Iwasaki
  • Kentaro Yoshida
  • Katsuhiko SatoEmail author
Original Contribution


Functional layer-by-layer (LbL) multilayer films using phenylboronic acid (PBA) have been typically prepared by exploiting the boronate ester bond between PBA and a diol polymer as the driving force. However, we have prepared PBA-containing LbL films through the electrostatic interaction of PBA and polycations, Poly(acrylamide-ran-3-acrylamidephenylboronic acid) (PBA-PAA) and various polycations such as poly(allylamine) hydrochloride (PAH), poly(ethyleneimine) (PEI), poly(diallyldimethylammonium chloride) (PDDA), and polyamidoamine (PAMAM) dendrimer were used. Construction of the multilayer films was influenced by the modification ratio of PBA, the shape of the polycations, solution pH, and the ion concentration. The results showed that the multilayered film was formed by electrostatic interaction. A multilayer film prepared from 10% PBA containing PBA-PAA and PAH showed pH, fructose, and H2O2 responses because these stimuli disturbed the charge balance inside the multilayer films. Such decomposition responses were comparable to that of PBA multilayer films constructed using boronate ester bonds.


Phenylboronic acid Functional thin film Layer-by-layer film Multilayer film 



The authors appreciate financial support in the form of Grants-in-Aid for Scientific Research (Nos. 16K08189 and 18 K06791) from the Japan Society for the Promotion of Science (JSPS).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Decher G (1997) Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science 277:1232–1237CrossRefGoogle Scholar
  2. 2.
    Inoue H, Sato K, Anzai J (2005). Biomacromolecules 6:27–29CrossRefPubMedGoogle Scholar
  3. 3.
    Sato K, Kodama D, Naka Y, Anzai J (2006) Electrochemically Induced Disintegration of Layer-by-Layer-Assembled Thin Films Composed of 2-Iminobiotin-Labeled Poly(ethyleneimine) and Avidin. Biomacromolecules 7:3302–3305CrossRefPubMedGoogle Scholar
  4. 4.
    Lvov Y, Ariga K, Ichinose I, Kunitake T (1995). J Chem Soc Chem Commun 22:2313–2314CrossRefGoogle Scholar
  5. 5.
    Sato K, Imoto Y, Sugama J, Seki S, Inoue H, Odagiri T, Hoshi T, Anzai J (2005) Sugar-Induced Disintegration of Layer-by-Layer Assemblies Composed of Concanavalin A and Glycogen. Langmuir 21:797–799CrossRefPubMedGoogle Scholar
  6. 6.
    Tomita S, Sato K, Anzai J (2008). J Colloid Interface Sci 326:35–40CrossRefPubMedGoogle Scholar
  7. 7.
    Rusling JF, Hvastkovs EG, Hulla DO, Schenkman JB (2008) Biochemical applications of ultrathin films of enzymes, polyions and DNA. Chem Commun:141–154Google Scholar
  8. 8.
    Takahashi S, Sato K, Anzai J (2012) Layer-by-layer construction of protein architectures through avidin–biotin and lectin–sugar interactions for biosensor applications. Anal Bioanal Chem 402:1749–1758CrossRefPubMedGoogle Scholar
  9. 9.
    Donath E, Sukhorukov GB, Caruso F, Davis SA, Möhwald H (1998). Angew Chem Int Ed 16:2202–2205Google Scholar
  10. 10.
    Sato K, Anzai J (2006) Fluorometric determination of sugars using fluorescein-labeled concanavalin A–glycogen conjugates. Anal Bioanal Chem 384:1297–1301CrossRefPubMedGoogle Scholar
  11. 11.
    Delcea M, Möhwald H, Skirtach AG (2011) Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv Drug Deliver Rev 63:730–747CrossRefGoogle Scholar
  12. 12.
    Sato K, Yoshida K, Takahashi S, Anzai J (2011) pH- and sugar-sensitive layer-by-layer films and microcapsules for drug delivery. Adv Drug Deliver Rev 63:809–821CrossRefGoogle Scholar
  13. 13.
    Prevot M, Déjugnat C, Möhwald H, Sukhorukov GB (2006) Behavior of Temperature-Sensitive PNIPAM Confined in Polyelectrolyte Capsules. Chem Phys Chem 7:2497–2502CrossRefPubMedGoogle Scholar
  14. 14.
    Selin V, Ankner JF, Sukhishvili SA (2015) Diffusional Response of Layer-by-Layer Assembled Polyelectrolyte Chains to Salt Annealing. Macromolecules 48:3983–3990CrossRefGoogle Scholar
  15. 15.
    Zhang X, Guan Y, Zhang Y (2012) Dynamically bonded layer-by-layer films for self-regulated insulin release. J Mater Chem 22:16299–16305CrossRefGoogle Scholar
  16. 16.
    Sato K, Shimizu S, Awaji K, Hitomi O, Anzai J (2018). J Colloid Interface Sci 510:302–307CrossRefPubMedGoogle Scholar
  17. 17.
    Ding Z, Guan Y, Zhang Y, Zhu XX (2009) Layer-by-layer multilayer films linked with reversible boronate ester bonds with glucose-sensitivity under physiological conditions. Soft Matter 5:2302–2309CrossRefGoogle Scholar
  18. 18.
    Takei C, Ohno Y, Seki T, Miki R (2018) Toshinobu Seki, Y. Egawa. Chem Pharm Bull 66:368–374CrossRefPubMedGoogle Scholar
  19. 19.
    Springsteen G, Wang B (2002) A detailed examination of boronic acid–diol complexation. Tetrahedron 58:5291–5300CrossRefGoogle Scholar
  20. 20.
    Nishiyabu R, Kobayashi H, Kubo Y (2012) Dansyl-containing boronate hydrogel film as fluorescent chemosensor of copper ions in water. RSC Adv 2:6555–6561CrossRefGoogle Scholar
  21. 21.
    Rajkumar R, Warsink A, Möhwald H, Scheller FW, Katterle M (2007). Biosens Bioelectron 22:3318–3325CrossRefPubMedGoogle Scholar
  22. 22.
    Pogorelova SP, Zayats M, Bourenko T, Kharitonov AB, Lioubashevski O, Katz E, Willner I (2003) Analysis of NAD(P)+/NAD(P)H Cofactors by Imprinted Polymer Membranes Associated with Ion-Sensitive Field-Effect Transistor Devices and Au−Quartz Crystals. Anal Chem 75:509–517CrossRefPubMedGoogle Scholar
  23. 23.
    Lapeyre V, Gosse I, Chevreux S, Ravaine V (2006) Monodispersed Glucose-Responsive Microgels Operating at Physiological Salinity. Biomacromolecules 7:3356–3363CrossRefPubMedGoogle Scholar
  24. 24.
    Fahmi MZ, Chen J, Huang C, Linge Y, Chang J (2015). J Mater Chem B 3:5532–5543CrossRefGoogle Scholar
  25. 25.
    B. G. De Geest, A. M. Jonas, J. Demeester, .S. C. De Smedt, Langmuir, 22 (2006) 5070–5074, Glucose-Responsive Polyelectrolyte CapsulesCrossRefPubMedGoogle Scholar
  26. 26.
    Lapeyre V, Renaudie N, Dechezelles J, Saadaoui H, Ravaine S, Ravaine V (2009) Multiresponsive Hybrid Microgels and Hollow Capsules with a Layered Structure. Langmuir 25:4659–4667CrossRefPubMedGoogle Scholar
  27. 27.
    Shi D, Ran M, Zhang L, Huang H, Li X, Chen M, Akashi M (2016) Fabrication of Biobased Polyelectrolyte Capsules and Their Application for Glucose-Triggered Insulin Delivery. ACS Appl Mater Interfaces 8:13688–13697CrossRefPubMedGoogle Scholar
  28. 28.
    Zhao Y, Yuan Q, Li C, Guan Y, Zhang Y (2015) Dynamic Layer-by-Layer Films: A Platform for Zero-Order Release. Biomacromolecules 16:2032–2039CrossRefPubMedGoogle Scholar
  29. 29.
    Watahiki R, Sato K, Niina S, Suwa K, Egawa Y, Seki T, Anzai J (2014). J Mater Chem B 2:5809–5817CrossRefGoogle Scholar
  30. 30.
    Shi D, Ran M, Huang H, Zhang L, Li X, Chen M, Akashi M (2016) Preparation of glucose responsive polyelectrolyte capsules with shell crosslinking via the layer-by-layer technique and sustained release of insulin. Polym Chem 7:6779–6788CrossRefGoogle Scholar
  31. 31.
    Sato K, Kodama D, Endo Y, Yoshida K, Anzai J (2010) Sugar-Sensitive Polyelectrolyte Microcapsules Containing Insulin. Kobunshi Ronbunshu 67:544–548CrossRefGoogle Scholar
  32. 32.
    Levy T, De’jugnat C, Sukhorukov GB (2008). Adv Funct Mater 18:1586–1594CrossRefGoogle Scholar
  33. 33.
    Li S, Davis EN, Anderson J, Lin Q, Wang Q (2009) Development of Boronic Acid Grafted Random Copolymer Sensing Fluid for Continuous Glucose Monitoring. Biomacromolecules 10:113–118CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Du X, Jiang G, Li L, Liu Y, Chen H, Huang Q (2015) Photo-induced synthesis glucose-responsive carriers for controlled release of insulin in vitro. Colloid Polym Sci 293:2129–2135CrossRefGoogle Scholar
  35. 35.
    Kawanishi T, Romey MA, Zhu PC, Holody MZ, Shinkai S (2004) A Study of Boronic Acid Based Fluorescent Glucose Sensors. J Fluoresc 14:499–512CrossRefPubMedGoogle Scholar
  36. 36.
    Simon J, Salzbrunn S, Prakash GKS, Petasis NA, Olah GA (2001) Regioselective Conversion of Arylboronic Acids to Phenols and Subsequent Coupling to Symmetrical Diaryl Ethers. J Org Chem 66:633–634CrossRefPubMedGoogle Scholar
  37. 37.
    Seno M, Yoshida K, Sato K, Anzai J (2016) pH- and sugar-sensitive multilayer films composed of phenylboronic acid (PBA)-modified poly(allylamine hydrochloride) (PBA-PAH) and poly(vinyl alcohol) (PVA): A significant effect of PBA content on the film stability. Mater Sci Eng C 62:474–479CrossRefGoogle Scholar
  38. 38.
    Saleem M, Wang L, Yu H, Zain-ul-Abdin M, Akram R, Ullah S (2017). Colloid Polym Sci 295:995–1006CrossRefGoogle Scholar
  39. 39.
    Sato K, Takahashi M, Ito M, Abe E, Anzai J (2014) H2O2-Induced Decomposition of Layer-by-Layer Films Consisting of Phenylboronic Acid-Bearing Poly(allylamine) and Poly(vinyl alcohol). Langmuir 30:9247–9250CrossRefPubMedGoogle Scholar
  40. 40.
    Sato K, Awaji K, Ito M, Anzai J (2017) Preparation of H2O2-induced poly (amidoamine) dendrimer-release multilayer films. Colloid Polym Sci 295:877–882CrossRefGoogle Scholar
  41. 41.
    de G Lux C, Joshi-Barr S, Nguyen T, Mahmoud E, Schopf E, Fomina N, Almutairi A (2012). J Am Chem Soc 135:15758–15764Google Scholar
  42. 42.
    Sato K, Iwasaki M, Oide Y, Anzai J (2017) Preparation of a PVA/PBA dispersion and its response to glucose, fructose, and hydrogen peroxide. Colloid Polym Sci 295:1521–1525CrossRefGoogle Scholar
  43. 43.
    Lewis GG, DiTucci MJ, Phillips ST (2012) Quantifying Analytes in Paper-Based Microfluidic Devices Without Using External Electronic Readers. Angew Chem Int Ed 51:12707–12710CrossRefGoogle Scholar
  44. 44.
    Dickinson BC, Huynh C, Chang CJ (2010) A Palette of Fluorescent Probes with Varying Emission Colors for Imaging Hydrogen Peroxide Signaling in Living Cells. J Am Chem Soc 132:5906–5915CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Nonaka H, An Q, Sugihara F, Doura T, Tsuchiya A, Yoshida Y, Sando S (2015) Phenylboronic Acid-based <sup>19</sup>F MRI Probe for the Detection and Imaging of Hydrogen Peroxide Utilizing Its Large Chemical-Shift Change. Anal Sci 31:331–335CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuki Oide
    • 1
  • Miku Iwasaki
    • 1
  • Kentaro Yoshida
    • 2
  • Katsuhiko Sato
    • 1
    Email author
  1. 1.Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
  2. 2.School of Pharmaceutical SciencesOhu UniversityFukushimaJapan

Personalised recommendations