Colloid and Polymer Science

, Volume 296, Issue 9, pp 1533–1544 | Cite as

Synthesis of mesoporous silica spheres utilizing in tandem with POSS-based block copolymer and anion surfactant as dual-template

  • Yiting XuEmail author
  • Jilu Li
  • Xiaoqing Sun
  • Kaiwei He
  • Meng Li
  • Tong Shen
  • Yuntong Li
  • Cong Li
  • Conghui Yuan
  • Birong Zeng
  • Lizong Dai
Original Contribution


In this work, novel mesoporous silica spheres were prepared by calcination of golf-shaped silica microspheres, which were fabricated via a typical sol-gel method by using synthetic amphiphilic block copolymer poly(acrylate isobutyl polyhedral oligomeric silsesquioxane)-b-poly(dimethylaminoethyl methacrylate co-styrene)) (PAPOSS-b-(PDMAEMA-co-PSt) and anionic surfactant sodium dodecyl sulfate (SDS) as dual-template. Firstly, three different POSS-based block copolymers were synthesized through subsequent homopolymerization of acrylate isobutyl POSS and chain extension of dimethylaminoethyl methacrylate (DMAEMA) and styrene with various feed ratios via reversible transfer radical polymerization (RAFT). These amphiphilic block polymers and SDS were utilized as cooperative template to golf-shaped silica microspheres. The electrostatic interaction between protonated PDMAEMA segments and anion surfactant as well as the strong interaction between PAPOSS segments and silicon source plays the dominant role in forming golf-shaped silica spheres. Moreover, the surface morphology of silica spheres can be tuned by varying molar ratio of PDMAEMA/PAPOSS. The resulting golf-shaped silica microspheres were further calcined to give mesoporous silica spheres which exhibited a BET surface area of 1031 m2 g−1, a total pore volume of 0.826 cm3 g−1, and a narrow pore size distribution centered at 3.20 nm.


Mesoporous silica spheres POSS-based block copolymer Golf-shaped Dual-template 


Funding information

This work was financially supported by the National Natural Science Foundation of China (51273164, 51673161), the Scientific and Technological Innovation Platform of Fujian Province (2014H2006, 2014I2005), Xiamen science and technology plan project (3502Z20171002), and Key Project of Fujian Department Science and Technology (2013HZ0005-1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2018_4376_MOESM1_ESM.doc (2.9 mb)
ESM 1 (DOC 2997 kb)


  1. 1.
    Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Silica-based mesoporous organic–inorganic hybrid materials. Angew Chem Int Ed 45(20):3216–3251CrossRefGoogle Scholar
  2. 2.
    Wu KCW, Yamauchi Y (2012) Controlling physical features of mesoporous silica nanoparticles (MSNs) for emerging applications. J Mater Chem 22(4):1251–1256CrossRefGoogle Scholar
  3. 3.
    Lai CY, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin VSY (2003) A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 125(15):4451–4459CrossRefPubMedGoogle Scholar
  4. 4.
    Backman M, Djurabekova F, Pakarinen OH, Nordlund K, Zhang Y, Toulemonde M, Weber WJ (2012) Cooperative effect of electronic and nuclear stopping on ion irradiation damage in silica. J Phys D Appl Phys 45(50):505–305CrossRefGoogle Scholar
  5. 5.
    Song SE, Lee SG (2002) Supported chiral catalysts on inorganic materials. Chem Rev 102(10):3495–3524CrossRefPubMedGoogle Scholar
  6. 6.
    Qi G, Wang Y, Estevez L, Duan X, Anako N, Park AHA, Giannelis EP (2010) High efficiency nanocomposite sorbents for CO2 capture based on amine functionalized mesoporous capsules. Energy Environ Sci 4(2):444–452CrossRefGoogle Scholar
  7. 7.
    Zhang WH, Hu XX, Zhang XB (2016) Dye-doped fluorescent silica nanoparticles for live cell and in vivo bioimaging. Nanomaterials 6(5):81CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Vrieling EG, Beelen TP, van Santen RT, Gieskes WW (2002) Mesophases of (bio)polymer-silica particles inspire a model for silica biomineralization in diatoms. Angew Chem Int Ed 41(9):1543–1546CrossRefGoogle Scholar
  9. 9.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesophorous-sieves synthesized by a liquid- crystal template mechanism. Nature 359:710–712CrossRefGoogle Scholar
  10. 10.
    Lin HP, Mou CT (2002) Structural and morphological control of cationic surfactant-templated mesoporous silica. Acc Chem Res 35(11):927–935CrossRefPubMedGoogle Scholar
  11. 11.
    Tanev PT, Pinnavaia TJ (1996) Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating: a comparison of physical properties. Chem Mater 8(8):2068–2079CrossRefGoogle Scholar
  12. 12.
    Che S, Garcia-Bennett AE, Yokoi T, Sakamoto K, Kunieda H, Terasaki O, Tatsumi T (2003) A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. Nat Mater 2(12):801–805CrossRefPubMedGoogle Scholar
  13. 13.
    Meng Y, Gu D, Zhang F, Shi Y, Yang H, Li Z, Zhao D (2005) Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. Angew Chem Int Ed 44(43):7053–7059CrossRefGoogle Scholar
  14. 14.
    Wu KCW, Jiang XF, Yamauchi Y (2011) New trend on mesoporous films: precise controls of one-dimensional (1D) mesochannels toward innovative applications. J Mater Chem 21(25):8934–8939CrossRefGoogle Scholar
  15. 15.
    Tan HB, Li YQ, Jiang XF, Tang J, Wang ZL, Qian HY, Mei P, Malgras V, Bando Y, Yamauchi Y (2017) Perfectly ordered mesoporous iron-nitrogen doped carbon as highly efficient catalyst for oxygen reduction reaction in both alkaline and acidic electrolytes. Nano Energy 36:286–294CrossRefGoogle Scholar
  16. 16.
    Wang HJ, Jeong HY, Imura M, Wang L, Radhakrishnan L, Fujita N, Castle T, Terasaki O, Yamauchi Y (2011) Shape-and size-controlled synthesis in hard templates: sophisticated chemical reduction for mesoporous monocrystalline platinum nanoparticles. J Am Chem Soc 133(37):14526–14529CrossRefPubMedGoogle Scholar
  17. 17.
    Li YQ, Bastakoti BP, Imura M, Hwang SM, Sun ZQ, Kim JH, Dou SX, Yamauchi Y (2014) Synthesis of mesoporous TiO2/SiO2 hybrid films as an efficient photocatalyst by polymeric micelle assembly. Chem Eur J 20(20):6027–6032CrossRefPubMedGoogle Scholar
  18. 18.
    Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TP, Rizzardo E (1998) Living free-radical polymerization by reversible addition− fragmentation chain transfer: the RAFT process. Macromolecules 31(16):5559–5562CrossRefGoogle Scholar
  19. 19.
    Chen SL, Dong P, Yang GH, Yang JJ (1996) Characteristic aspects of formation of new particles during the growth of monosize silica seeds. J Colloid Interface Sci 180(1):237–241CrossRefGoogle Scholar
  20. 20.
    Liaw DJ, Lee WF, Whung YC, Lin MC (1987) Aqueous solution properties of poly[3-dimethyl (methacryloyloxyethyl) ammonium propane sulfonate]. J Appl Polym Sci 34(3):999–1011CrossRefGoogle Scholar
  21. 21.
    Lin HM, Zhu GS, Xing JJ, Gao B, Qiu SL (2009) Polymer-mesoporous silica materials template with an oppositely charged surfactant/polymer system for drug delivery. Langmuir 25(17):10159–10164CrossRefPubMedGoogle Scholar
  22. 22.
    Rana VK, Park SS, Parambadath S, Kim MJ, Kim SH, Mishra S, Singh RP, Ha CS (2011) Hierarchical mesoporous bio-polymer/silica composites co-templated by trimethyl chitosan and a surfactant for controlled drug delivery. MedChemDomm 2(12):1162–1166CrossRefGoogle Scholar
  23. 23.
    Kurttepeli M, Locus R, Verboekend D, de Clippel F, Breynaert E, Martens J, Bals S (2016) Synthesis of aluminum-containing hierarchical mesoporous materials with columnar mesopore ordering by evaporation induced self-assembly. Microporous Mesoporous Mater 234:186–195CrossRefGoogle Scholar
  24. 24.
    Pérez-Page M, Yu E, Li J, Rahman M, Dryden DM, Vidu R, Stroeve P (2016) Template-based syntheses for shape controlled nanostructures. Adv Colloid Interf Sci 234:51–79CrossRefGoogle Scholar
  25. 25.
    Xia Y, Yin Y, Lu Y, McLellan J (2003) Template-assisted self-assembly of spherical colloids into complex and controllable structures. Adv Funct Mater 13(12):907–918CrossRefGoogle Scholar
  26. 26.
    Araki S, Doi H, Sano Y, Tanaka S, Miyake Y (2009) Preparation and CO2 adsorption properties of aminopropyl-functionalized mesoporous silica microspheres. J Colloid Interface Sci 339(2):382–389CrossRefPubMedGoogle Scholar
  27. 27.
    Chen F, Shi R, Xue Y, Chen L, Wan QH (2010) Templated synthesis of monodisperse mesoporous maghemite/silica microspheres for magnetic separation of genomic DNA. J Magn Magn Mater 322(16):2439–2445CrossRefGoogle Scholar
  28. 28.
    Zhu X, Gu J, Li Y, Zhao W, Shi J (2014) Magnetic core-mesoporous shell nanocarriers with drug anchorages suspended in mesopore interior for cisplatin delivery. Microporous Mesoporous Mater 196:115–121CrossRefGoogle Scholar
  29. 29.
    Zhao L, Chi Y, Yuan Q, Li N, Yan W, Li X (2013) Phosphotungstic acid anchored to amino-functionalized core-shell magnetic mesoporous silica microspheres: a magnetically recoverable nanocomposite with enhanced photocatalytic activity. J Colloid Interface Sci 390:70–77CrossRefPubMedGoogle Scholar
  30. 30.
    Deng Y, Liu C, Yu T, Liu F, Zhang F, Wan Y, Wang H (2007) Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach. Chem Mater 19(13):3271–3277CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yiting Xu
    • 1
    Email author
  • Jilu Li
    • 1
  • Xiaoqing Sun
    • 1
  • Kaiwei He
    • 1
  • Meng Li
    • 1
  • Tong Shen
    • 1
  • Yuntong Li
    • 1
  • Cong Li
    • 1
  • Conghui Yuan
    • 1
  • Birong Zeng
    • 1
  • Lizong Dai
    • 1
  1. 1.Fujian Provincial Key Laboratory of Fire Retardant Materials, College of MaterialsXiamen UniversityXiamenPeople’s Republic of China

Personalised recommendations