Advertisement

Colloid and Polymer Science

, Volume 296, Issue 9, pp 1515–1522 | Cite as

Time-dependent behavior in analyte-, temperature-, and shear-sensitive Pluronic PE9400/water systems

  • N. Calero
  • J. Santos
  • C. Echevarría
  • J. Muñoz
  • M. T. Cidade
Original Contribution
  • 56 Downloads

Abstract

Pluronic PE9400/water binary systems at different concentrations were characterized by means of rheological and microstructural techniques. Temperature ramps revealed a structural transition defined by three zones, which determine time-dependent behaviors. Thus, non-time-dependent, antithixotropic, and thixotropic behaviors were observed depending on Pluronic’s concentration and temperature. These phenomena were analyzed resorting to rheological tools, namely hysteresis loops and transient tests, and supported by Cryo-SEM. The results obtained demonstrated the shear-sensitive character of these systems. All properties presented by these systems make them adequate and interesting for many applications such as injectable systems for tissue repair.

Graphical abstract

Influence of temperature on viscoelastic functions and microstructure for 25 wt% Pluronic PE9400/water system

Keywords

Pluronic PE9400 Stimuli-sensitive hydrogels Temperature ramp Start-up at inception shear tests Time-dependent behavior Shear-induced structures 

Notes

Acknowledgements

M.T. Cidade acknowledges EURAMET (Project EURAMET/JRP/ENG59) for supporting her stay in Seville University.

Funding information

The financial support was received (Project CTQ2015-70700-P) from the Spanish Ministerio de Economia y Competitividad, as well as the support from the Portuguese Foundation for Science and Technology through the strategic project UID/CTM/50025/2013 (Cenimat/I3N) and the European Commission (FEDER Programme).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Wang X, Cong S, Wang P et al (2017) Novel green micelles Pluronic F-127 coating performance on nano zero-valent iron: enhanced reactivity and innovative kinetics. Sep Purif Technol 174:174–182CrossRefGoogle Scholar
  2. 2.
    Morales ME, Gallardo V, Clares B et al (2009) Study and description of hydrogels and organogels as vehicles for cosmetic active ingredients. J Cosmet Sci 60:627–636PubMedGoogle Scholar
  3. 3.
    Serieye S, Méducin F, Milošević I et al (2017) Interface tuning and stabilization of monoglyceride mesophase dispersions: food emulsifiers and mixtures efficiency. J Colloid Interface Sci 496:26–34CrossRefPubMedGoogle Scholar
  4. 4.
    Pérez-Mosqueda LM, Ramírez P, Trujillo-Cayado LA et al (2014) Development of eco-friendly submicron emulsions stabilized by a bio-derived gum. Colloids Surf B Biointerfaces 123:797–802.  https://doi.org/10.1016/j.colsurfb.2014.10.022 CrossRefPubMedGoogle Scholar
  5. 5.
    Powell KC, Damitz R, Chauhan A (2017) Relating emulsion stability to interfacial properties for pharmaceutical emulsions stabilized by Pluronic F68 surfactant. Int J Pharm 521:8–18CrossRefPubMedGoogle Scholar
  6. 6.
    Ramírez P, Muñoz J, Fainerman VB et al (2011) Dynamic interfacial tension of triblock copolymers solutions at the water-hexane interface. Colloids Surf A Physicochem Eng Asp 391:119–124.  https://doi.org/10.1016/j.colsurfa.2011.04.019 CrossRefGoogle Scholar
  7. 7.
    Jain NJ, Aswal VK, Goyal PS, Bahadur P (1998) Micellar structure of an ethylene oxide− propylene oxide block copolymer: a small-angle neutron scattering study. J Phys Chem B 102:8452–8458CrossRefGoogle Scholar
  8. 8.
    Pragatheeswaran AM, Chen SB (2016) The influence of poly (acrylic acid) on micellization and gelation characteristics of aqueous Pluronic F127 copolymer system. Colloid Polym Sci 294:107–117CrossRefGoogle Scholar
  9. 9.
    Omidian H PK (2012) Hydrogels. In: Siepmann J, Siegel R RM (ed) Fundamentals and Applications of Controlled Release Drug Delivery. New York, pp 75–106Google Scholar
  10. 10.
    Prud’homme RK, Wu G, Schneider DK (1996) Structure and rheology studies of poly (oxyethylene− oxypropylene− oxyethylene) aqueous solution. Langmuir 12:4651–4659CrossRefGoogle Scholar
  11. 11.
    Wang P, Johnston TP (1991) Kinetics of sol-to-gel transition for poloxamer polyols. J Appl Polym Sci 43:283–292CrossRefGoogle Scholar
  12. 12.
    Zhang Y, Song W, Geng J et al (2016) Therapeutic surfactant-stripped frozen micelles. Nat Commun 7Google Scholar
  13. 13.
    Zhang Y, Wang D, Goel S et al (2016) Surfactant-stripped frozen pheophytin micelles for multimodal gut imaging. Adv Mater 28:8524–8530CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Santos J, Calero N, Trujillo-Cayado LA et al (2017) Assessing differences between Ostwald ripening and coalescence by rheology, laser diffraction and multiple light scattering. Colloids Surf B Biointerfaces 159:405–411CrossRefPubMedGoogle Scholar
  15. 15.
    Pérez-Mosqueda LM, Maldonado-Valderrama J, Ramírez P et al (2013) Interfacial characterization of Pluronic PE9400 at biocompatible (air–water and limonene–water) interfaces. Colloids Surf B Biointerfaces 111:171–178CrossRefPubMedGoogle Scholar
  16. 16.
    Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRefGoogle Scholar
  17. 17.
    Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46CrossRefPubMedGoogle Scholar
  18. 18.
    Gnavi S, Blasio L, Tonda-Turo C et al (2017) Gelatin-based hydrogel for vascular endothelial growth factor release in peripheral nerve tissue engineering. J Tissue Eng Regen Med 11:459–470CrossRefPubMedGoogle Scholar
  19. 19.
    Tan H, Marra KG (2010) Injectable, biodegradable hydrogels for tissue engineering applications. Materials (Basel) 3:1746–1767CrossRefGoogle Scholar
  20. 20.
    Tonda-Turo C, Gnavi S, Ruini F et al (2017) Development and characterization of novel agar and gelatin injectable hydrogel as filler for peripheral nerve guidance channels. J Tissue Eng Regen Med 11:197–208CrossRefPubMedGoogle Scholar
  21. 21.
    Gioffredi E, Boffito M, Calzone S et al (2016) Pluronic F127 hydrogel characterization and biofabrication in cellularized constructs for tissue engineering applications. Procedia CIRP 49:125–132CrossRefGoogle Scholar
  22. 22.
    Ben Henda M, Gharbi A (2017) Temperature, concentration and salt effect on F68 tri-block copolymer in aqueous solution: rheological study. Polym Sci Ser A+ 59:445–450.  https://doi.org/10.1134/S0965545X17030014 CrossRefGoogle Scholar
  23. 23.
    Hofmann S, Rauscher A, Hoffmann H (1991) Shear induced micellar structures. Ber Bunsenges Phys Chem 95:153–164CrossRefGoogle Scholar
  24. 24.
    Fujii S, Mitsumasu D, Isono Y (2013) Shear-induced onion formation of triblock copolymer-embedded surfactant lamellar phase. Nihon Reoroji Gakkaishi 41:29–34CrossRefGoogle Scholar
  25. 25.
    Imai M, Nakaya K, Kato T et al (1999) Shear effects on the morphology transition in a nonionic surfactant system. J Phys Chem Solids 60:1313–1319CrossRefGoogle Scholar
  26. 26.
    Carvajal-Ramos F, González-Álvarez A, Vega-Acosta JR et al (2011) Phase and rheological behavior of cetyldimethylbenzylammonium salicylate (CDBAS) and water. J Surfactant Deterg 14:269–279CrossRefGoogle Scholar
  27. 27.
    Manosroi A, Wongtrakul P, Manosroi J et al (2003) Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol. Colloids Surf B Biointerfaces 30:129–138CrossRefGoogle Scholar
  28. 28.
    Calero N, Alfaro C, García C et al (2011) Rheological and microstructural behavior of a model concentrated fabric softener. Chem Eng Technol 34:1473–1480CrossRefGoogle Scholar
  29. 29.
    Medronho B, Fujii S, Richtering W et al (2005) Reversible size of shear-induced multi-lamellar vesicles. Colloid Polym Sci 284:317–321CrossRefGoogle Scholar
  30. 30.
    Jiang J, Burger C, Li C et al (2007) Shear-induced layered structure of polymeric micelles by SANS. Macromolecules 40:4016–4022.  https://doi.org/10.1021/ma062654j CrossRefGoogle Scholar
  31. 31.
    Zipfel J, Berghausen J, Schmidt G et al (1999) Shear induced structures in lamellar phases of amphiphilic block copolymers. Phys Chem Chem Phys 1:3905–3910.  https://doi.org/10.1039/a904014e CrossRefGoogle Scholar
  32. 32.
    Goldszal A, Jamieson AM, Mann Jr JA et al (1996) Rheology, optical microscopy, and electron microscopy of cationic surfactant gels. J Colloid Interface Sci 180:261–268CrossRefGoogle Scholar
  33. 33.
    van der Plas B, Golombok M (2017) Reservoir resilience of viscoelastic surfactants. J Pet Explor Prod Technol 7:873–879CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Reología Aplicada, Tecnología de Coloides, Departamento de Ingeniería Química, Facultad de QuímicaUniversidad de SevillaSevillaSpain
  2. 2.Departamento de Ciência dos Materiais and CENIMAT/I3N, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations