Colloid and Polymer Science

, Volume 296, Issue 9, pp 1459–1477 | Cite as

Reliable method for determining the complete kinetic and thermodynamic information for thermal degradation of polymers in a multi-step process

  • Bojan JankovićEmail author
Original Contribution


Proposed approach enables a reliable determination of kinetic and thermodynamic behaviors for thermal degradation of polymers. As a model polymer, poly(ethylene oxide) with average molecular weight Mv ~ 100.000 (PEO100) was used. Two-component continuous distribution kinetics best describes PEO100 thermal degradation, involving two main reactions with different values of reaction orders. Procedure enables the check of existence of true or real enthalpy–entropy compensation (EEC). It was established that in the case of random scission reaction step, the artificial EEC emerges. For second reaction step which involves β-scission reaction step (“slow” step), true (real) EEC emerges. It was found that this reaction step is responsible for occurrence of successive micro-phase transitions. These transitions are associated with significant reduction of PEO100 crystallinity through a hinder effect on polymer chains. It was concluded that these transitions are cyclic and reversible, related to the change of mechanical properties of the polymer.


Multi-step thermal degradation Carnot cycle model Enthalpy–entropy compensation Micro-fragmentation (kernel) distribution Micro-phase transitions 


Funding information

The author would like to thank for the financial support of Ministry of Education, Science, and Technological Development of the Republic of Serbia under the Project 172015.

Compliance with ethical standards

Conflict of interest

The author declares that there is no conflict of interest.


  1. 1.
    Hazrat MA, Rasul MG, Khan MMK (2015) A study on thermo-catalytic degradation for production of clean transport fuel and reducing plastic wastes. Procedia Eng 105:865–876CrossRefGoogle Scholar
  2. 2.
    Peterson JD, Vyazovkin S, Wight CA (2001) Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys 202:775–784CrossRefGoogle Scholar
  3. 3.
    Gonzalez-Benito J, Esteban I (2005) Morphologic and kinetic study of an epoxy-poly(ethyleneoxide) system. The fluorescence to predict miscibility. Colloid Polym Sci 283(5):559–569CrossRefGoogle Scholar
  4. 4.
    Kameno N, Yamada S, Amimoto T, Amimoto K, Ikeda H, Koga N (2016) Thermal degradation of poly(lactic acid) oligomer: reaction mechanism and multistep kinetic behavior. Polym Degrad Stab 134:284–295CrossRefGoogle Scholar
  5. 5.
    Marentette JM, Brown GR (1998) The crystallization of poly (ethylene oxide) in blends with neat and plasticized poly(vinyl chloride). Polymer 39(6–7):1415–1427CrossRefGoogle Scholar
  6. 6.
    Crowley MM, Zhang F, Koleng JJ, McGinity JW (2002) Stability of polyethylene oxide in matrix tablets prepared by hot-melt extrusion. Biomaterials 23(21):4241–4248CrossRefPubMedGoogle Scholar
  7. 7.
    Pinto JF, Wunder KF, Okoloekwe A (2004) Evaluation of the potential use of poly (ethylene oxide) as tablet- and extrudate-forming material. AAPS PharmSci 6(2):e15CrossRefPubMedGoogle Scholar
  8. 8.
    Martuscelli E, Silvestre C, Addonizio ML, Amelino L (1986) Phase structure and compatibility studies in poly(ethylene oxide)/poly(methyl methacrylate) blends. Makromol Chem 187:1557–1571CrossRefGoogle Scholar
  9. 9.
    ASTM E1582-17 Standard test method for temperature calibration of thermogravimetric analyzers. ASTM International, West Conshohocken, PA, p 2017Google Scholar
  10. 10.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19CrossRefGoogle Scholar
  11. 11.
    Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C 6(1):183–195CrossRefGoogle Scholar
  12. 12.
    Arshad MA, Maaroufi A, Benavente R, Pinto G (2016) Thermal degradation mechanisms of epoxy composites filled with tin particles. Polym Compos 37:5–16CrossRefGoogle Scholar
  13. 13.
    Flynn JH (1997) Temperature integral. Its use and abuse. Thermochim Acta 300:83–92CrossRefGoogle Scholar
  14. 14.
    Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29(11):1702–1706CrossRefGoogle Scholar
  15. 15.
    Akahira T, Sunose T (1971) Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol) 16:22–31Google Scholar
  16. 16.
    Starink MJ (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404:163–176CrossRefGoogle Scholar
  17. 17.
    Gotor FJ, Criado JM, Málek J, Koga N (2000) Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A 104(46):10777–10782CrossRefGoogle Scholar
  18. 18.
    Coats A, Redfern J (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69CrossRefGoogle Scholar
  19. 19.
    Eftimie E, Segal E (1987) Basic language programs for automatic processing non-isothermal kinetic data. Thermochim Acta 111:359–367CrossRefGoogle Scholar
  20. 20.
    Khawam A, Flanagan DR (2006) Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B 110(35):17315–17328CrossRefPubMedGoogle Scholar
  21. 21.
    Málek J, Criado JM (1994) A simple method of kinetic-model discrimination. Part 1. Analysis of differential nonisothermal data. Thermochim Acta 236:187–197CrossRefGoogle Scholar
  22. 22.
    Burnham AK, Braun RL (1999) Global kinetic analysis of complex materials. Energy Fuel 13(1):1–22CrossRefGoogle Scholar
  23. 23.
    Alongi J, Camino G, Malucelli G (2013) Heating rate effect on char yield from cotton, poly(ethylene terephthalate) and blend fabrics. Carbohydr Polym 92:1327–1334CrossRefPubMedGoogle Scholar
  24. 24.
    Rahman MA, Khan MA, Tareq SM (2010) Preparation and characterization of polyethylene oxide (PEO)/gelatin blend for biomedical application: effect of gamma radiation. J Appl Polym Sci 117(4):2075–2082CrossRefGoogle Scholar
  25. 25.
    Grassie N, Perdomo Mendoza GA (1984) Thermal degradation of polyether-urethanes: part 1—thermal degradation of poly(ethylene glycols) used in the preparation of polyurethanes. Polym Degrad Stab 9(3):155–165CrossRefGoogle Scholar
  26. 26.
    Erceg M, Jozić D, Banovac I, Perinović S, Bernstorff S (2014) Preparation and characterization of melt intercalated poly(ethylene oxide)/lithium montmorillonite nanocomposites. Thermochim Acta 579:86–92CrossRefGoogle Scholar
  27. 27.
    Stipanelov Vrandečić N, Erceg M, Jakić M, Klarić I (2010) Kinetic analysis of thermal degradation of poly(ethylene glycol) and poly(ethylene oxide)s of different molecular weight. Thermochim Acta 498:71–80CrossRefGoogle Scholar
  28. 28.
    Wang F-Y, Ma CCM, Wu W-J (2001) Kinetic parameters of thermal degradation of polyethylene glycol-toughened novolac-type phenolic resin. J Appl Polym Sci 80(2):188–196CrossRefGoogle Scholar
  29. 29.
    Audebert R, Aubineau C (1970) Etude par thermogravimetrie dynamique de la degradation thermique des polymeres. Eur Polym J 6(7):965–979CrossRefGoogle Scholar
  30. 30.
    Calahorra E, Cortazar M, Guzmán GM (1985) Thermal decomposition of poly (ethylene oxide), poly(methyl methacrylate), and their mixtures by thermogravimetric method. J Polym Sci Lett Ed 23(5):257–260CrossRefGoogle Scholar
  31. 31.
    Cran MJ, Gray SR, Scheirs J, Bigger SW (2011) Non-isothermal depolymerisation kinetics of poly(ethylene oxide). Polym Degrad Stab 96:1497–1502CrossRefGoogle Scholar
  32. 32.
    Georgieva V, Zvezdova D, Vlaev L (2012) Non-isothermal kinetics of thermal degradation of chitosan. Chem Cent J 6:81–90CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    de Sainte Claire P (2009) Degradation of PEO in the solid state: a theoretical kinetic model. Macromolecules 42:3469–3482CrossRefGoogle Scholar
  34. 34.
    Lide DR (1995) Handbook of chemistry and physics76th edn. CRC Press, New YorkGoogle Scholar
  35. 35.
    Choukourov A, Grinevich A, Polonskyi O, Hanus J, Kousal J, Slavinska D, Biederman H (2009) Vacuum thermal degradation of poly(ethylene oxide). J Phys Chem B 113:2984–2989CrossRefPubMedGoogle Scholar
  36. 36.
    Shih YF, Chieh YC (2007) Thermal degradation behavior and kinetic analysis of biodegradable polymers using various comparative models, 1 poly(butylene succinate). Macromol Theory Simul 16:101–110CrossRefGoogle Scholar
  37. 37.
    Jarullah AT (2011) Kinetic modelling simulation and optimal operation of trickle bed reactor for hydrotreating of crude oil. Thesis for the Degree of Doctor of Philosophy (Ph.D), School of Engineering, Design and Technology University of Bradford, United Kingdom, UK, Bradford Library, pp. 1–260Google Scholar
  38. 38.
    Chen T, Zhang J, Wu J (2016) Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model. Bioresour Technol 211:502–508CrossRefPubMedGoogle Scholar
  39. 39.
    Dutronc T, Terazzi E, Piguet C (2014) Melting temperatures deduced from molar volumes: a consequence of the combination of enthalpy/entropy compensation with linear cohesive free-energy densities. RSC Adv 4:15740–15748CrossRefGoogle Scholar
  40. 40.
    Piguet C (2011) Enthalpy-entropy correlations as chemical guides to unravel self-assembly processes. Dalton Trans 40:8059–8071CrossRefPubMedGoogle Scholar
  41. 41.
    Draper NR, Smith H (1998) Applied regression analysis3rd edn. Wiley, New York, pp xvii–x706Google Scholar
  42. 42.
    Pan A, Kar T, Rakshit AK, Moulik SP (2016) Enthalpy-entropy compensation (EEC) effect: decisive role of free energy. J Phys Chem B 120:10531–10539CrossRefGoogle Scholar
  43. 43.
    Pan A, Biswas T, Rakshit AK, Moulik SP (2015) Enthalpy-entropy compensation (EEC): a revisit. J Phys Chem B 119:15876–15884CrossRefPubMedGoogle Scholar
  44. 44.
    Perez-Benito JF (2013) Some tentative explanations for the enthalpy-entropy compensation effect in chemical kinetics: from experimental errors to the Hinshelwood-like model. Monatshefte für Chemie—Chem Mont 144(1):49–58CrossRefGoogle Scholar
  45. 45.
    Chawla S, Ghosch AK, Ahmad S, Avasthi DK (2006) Swift heavy ion induced structural and chemical changes in BOPP film. Nucl Instr Meth Phys Res B 244:248–251CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of General and Physical Chemistry, Faculty of Physical ChemistryUniversity of BelgradeBelgradeSerbia

Personalised recommendations