Colloid and Polymer Science

, Volume 296, Issue 9, pp 1449–1457 | Cite as

Poly(urea-formaldehyde) microcapsules containing commercial paraffin: in situ polymerization study

  • L. Sánchez-SilvaEmail author
  • V. Lopez
  • N. Cuenca
  • J. L. Valverde
Original Contribution


Microcapsules containing Rubitherm® RT-42 paraffin wax (core) and a poly(urea-formaldehyde) shell were prepared by an in situ polymerization. The influence of prepolymerization/polymerization time, the reaction temperature, and the monomers/phase change material (PCM) mass ratio on the encapsulation process and the physical properties of the resulting microcapsules was studied. The morphology, chemical composition, and particle size distribution of the microcapsules were characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR). It was found that the structure of the generated poly(urea-formaldehyde) microcapsules strongly depended on the reaction time. The content of encapsulated Rubitherm® RT-42 increased with increasing reaction temperature until a limit, ranging the optimum reaction temperature from 60 to 70 °C. Finally, it was found that the optimal monomers/PCM mass ratio was 0.8. The poly(urea-formaldehyde) microcapsules obtained containing the RT-42 paraffin can be used as thermal energy storage systems.


In situ polymerization Microcapsules Poly(urea-formaldehyde) Phase change materials 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S (2004) A review on phase change energy storage: materials and applications. Energy Convers Manag 45(9–10):1597–1615CrossRefGoogle Scholar
  2. 2.
    Bentz DP, Turpin R (2007) Potential applications of phase change materials in concrete technology. Cem Concr Compos 29(7):527–532CrossRefGoogle Scholar
  3. 3.
    Biswas K, Lu J, Soroushian P, Shrestha S (2014) Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard. Appl Energy 131:517–529CrossRefGoogle Scholar
  4. 4.
    Borreguero AM, Carmona M, Sanchez ML, Valverde JL, Rodriguez JF (2010) Improvement of the thermal behaviour of gypsum blocks by the incorporation of microcapsules containing PCMS obtained by suspension polymerization with an optimal core/coating mass ratio. Appl Therm Eng 30(10):1164–1169CrossRefGoogle Scholar
  5. 5.
    Castellón C, Medrano M, Roca J, Cabeza LF, Navarro ME, Fernández AI, Lázaro A, Zalba B (2010) Effect of microencapsulated phase change material in sandwich panels. Renew Energy 35(10):2370–2374CrossRefGoogle Scholar
  6. 6.
    Pomianowski M, Heiselberg P, Jensen RL (2012) Dynamic heat storage and cooling capacity of a concrete deck with PCM and thermally activated building system. Energ Buildings 53:96–107CrossRefGoogle Scholar
  7. 7.
    Sánchez P, Sánchez-Fernandez MV, Romero A, Rodríguez JF, Sánchez-Silva L (2010) Development of thermo-regulating textiles using paraffin wax microcapsules. Thermochim Acta 498(1–2):16–21CrossRefGoogle Scholar
  8. 8.
    Sánchez-Silva L, Rodríguez JF, Romero A, Sánchez P (2012) Preparation of coated thermo-regulating textiles using Rubitherm-RT31 microcapsules. J Appl Polym Sci 124(6):4809–4818Google Scholar
  9. 9.
    Serale G, Fabrizio E, Perino M (2015) Design of a low-temperature solar heating system based on a slurry phase change material (PCS). Energ Buildings 106:44–58CrossRefGoogle Scholar
  10. 10.
    Royon L, Jacquier D, Mercier P (2009) Flow investigation of phase change material (PCM) slurry as a heat transfer fluid in a closed loop system. Int J Energy Res 33(4):333–341CrossRefGoogle Scholar
  11. 11.
    Cano D, Funéz C, Rodriguez L, Valverde JL, Sanchez-Silva L (2016) Experimental investigation of a thermal storage system using phase change materials. Appl Therm Eng 107:264–270CrossRefGoogle Scholar
  12. 12.
    Li G, Hwang Y, Radermacher R (2012) Review of cold storage materials for air conditioning application. Int J Refrig 35(8):2053–2077CrossRefGoogle Scholar
  13. 13.
    Karthikeyan M, Ramachandran T (2014) Review of thermal energy storage of micro and nanoencapsulated phase change materials. Mater Res Innov 18(7):541–554CrossRefGoogle Scholar
  14. 14.
    Zhao CY, Zhang GH (2011) Review on microencapsulated phase change materials (MEPCMs): fabrication, characterization and applications. Renew Sust Energ Rev 15(8):3813–3832CrossRefGoogle Scholar
  15. 15.
    Fan YF, Zhang XX, Wang XC, Li J, Zhu QB (2004) Super-cooling prevention of microencapsulated phase change material. Thermochim Acta 413(1–2):1–6CrossRefGoogle Scholar
  16. 16.
    Zhang XX, Fan YF, Tao XM, Yick KL (2004) Fabrication and properties of microcapsules and nanocapsules containing n-octadecane. Mater Chem Phys 88(2–3):300–307CrossRefGoogle Scholar
  17. 17.
    Li W, Zhang XX, Wang XC, Niu JJ (2007) Preparation and characterization of microencapsulated phase change material with low remnant formaldehyde content. Mater Chem Phys 106(2–3):437–442CrossRefGoogle Scholar
  18. 18.
    Jin Z, Wang Y, Liu J, Yang Z (2008) Synthesis and properties of paraffin capsules as phase change materials. Polymer 49(12):2903–2910CrossRefGoogle Scholar
  19. 19.
    Mohaddes F, Islam S, Shanks R, Fergusson M, Wang L, Padhye R (2014) Modification and evaluation of thermal properties of melamine-formaldehyde/ n-eicosane microcapsules for thermo-regulation applications. Appl Therm Eng 71(1):11–15CrossRefGoogle Scholar
  20. 20.
    Xin C, Tian Y, Wang Y, Huang X (2014) Effect of curing temperature on the performance of microencapsulated low melting point paraffin using urea-formaldehyde resin as a shell. Text Res J 84(8):831–839CrossRefGoogle Scholar
  21. 21.
    Yin D, Ma L, Geng W, Zhang B, Zhang Q (2015) Microencapsulation of n-hexadecanol by in situ polymerization of melamine-formaldehyde resin in emulsion stabilized by styrene-maleic anhydride copolymer. Int J Energy Res 39(5):661–667CrossRefGoogle Scholar
  22. 22.
    Salaün F, Devaux E, Bourbigot S, Rumeau P (2009) Influence of process parameters on microcapsules loaded with n-hexadecane prepared by in situ polymerization. Chem Eng J 155(1):457–465CrossRefGoogle Scholar
  23. 23.
    Huang ZH, Yu X, Li W, Liu SX (2015) Preparation of urea-formaldehyde paraffin microcapsules modified by carboxymethyl cellulose as a potential phase change material. J For Res 26(1):253–260CrossRefGoogle Scholar
  24. 24.
    Karthikeyan M, Ramachandran T, Shanmugasundaram OL (2014) Synthesis, characterization, and development of thermally enhanced cotton fabric using nanoencapsulated phase change materials containing paraffin wax. J Text Inst 105(12):1279–1286CrossRefGoogle Scholar
  25. 25.
    Yu X, Huang Z, Yu K (2014) Effects of emulsifiers on preparing spherical urea-formaldehyde paraffin capsules modified by β-cyclodextrin for energy storage. J Nanomater 2014:1–7Google Scholar
  26. 26.
    Yuan L, Liang G, Xie J, Li L, Guo J (2006) Preparation and characterization of poly(urea-formaldehyde) microcapsules filled with epoxy resins. Polymer 47(15):5338–5349CrossRefGoogle Scholar
  27. 27.
    Fang G, Li H, Yang F, Liu X, Wu S (2009) Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage. Chem Eng J 153(1):217–221CrossRefGoogle Scholar
  28. 28.
    Park S-J, Shin Y-S, Lee J-R (2001) Preparation and characterization of microcapsules containing lemon oil. J Colloid Interface Sci 241(2):502–508CrossRefGoogle Scholar
  29. 29.
    Giro-Paloma J, Konuklu Y, Fernández AI (2015) Preparation and exhaustive characterization of paraffin or palmitic acid microcapsules as novel phase change material. Sol Energy 112(Supplement C):300–309CrossRefGoogle Scholar
  30. 30.
    S. Cosco Polymer based microparticles for advanced composite materials applications, Università degli Studi di Napoli Federico II, 2007Google Scholar
  31. 31.
    Rochmadi A, Prasetya WH (2010) Mechanism of microencapsulation with urea-formaldehyde polymer. Am J Appl Sci 7(6):739–745CrossRefGoogle Scholar
  32. 32.
    Xin C, Tian Y, Wang Y, Huang Xa (2014) Effect of curing temperature on the performance of microencapsulated low melting point paraffin using urea-formaldehyde resin as a shell. Text Res J 84(8):831–839CrossRefGoogle Scholar
  33. 33.
    Konuklu Y, Unal M, Paksoy HO (2014) Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage. Sol Energy Mater Sol Cells 120 (536–542CrossRefGoogle Scholar
  34. 34.
    A. Pizzi, K.L. Mittal, Handbook of adhesive technology, revised and expanded, CRC press2003Google Scholar
  35. 35.
    de Jong JI, de Jonge J (1952) The reaction of urea with formaldehyde. Recueil des Travaux Chimiques des Pays-Bas 71(7):643–660CrossRefGoogle Scholar
  36. 36.
    C.Z. Xin, L.N. Wang, X.G. Huang, Z.S. Fan, Effect of pre-polymerization conditions on the performance of UF/low melting point paraffin microcapsules, Appl Mech Mater, Trans Tech Publ, 2013, pp. 163–167, 321-324Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • L. Sánchez-Silva
    • 1
    Email author
  • V. Lopez
    • 1
  • N. Cuenca
    • 1
  • J. L. Valverde
    • 1
  1. 1.Department of Chemical EngineeringUniversity of Castilla–La ManchaCiudad RealSpain

Personalised recommendations