Colloid and Polymer Science

, Volume 296, Issue 9, pp 1419–1429 | Cite as

Covalent immobilization of TiO2 within macroporous polymer monolith as a facilely recyclable photocatalyst for water decontamination

  • Yuyan Yu
  • Xiao Meng
  • Ni Zeng
  • Yi DanEmail author
  • Long JiangEmail author
Original Contribution


This study focused on the covalent immobilization of TiO2 on the surface of a porous polymer monolith by a two-step method. Firstly, porous polymeric monolith with trimethoxysilane anchor groups was fabricated by w/o emulsion templated copolymerization of vinyl acetate (VAc) and methacryloxypropyl-trimethoxysilane (MPS). Then, anatase TiO2 were covalently immobilized within the voids of poly(VAc-MPS) monolith via an acid-catalyzed co-condensation of the trimethoxysilane group with a TiO2 sol precursor at low temperate. Scanning electron microscopy images demonstrated that both poly(VAc-MPS) and Ti-P(VAc-MPS) possess dense honeycomb-like macroporous structures. The chemical structure analysis by Fourier transform infrared spectroscopy, powder X-ray diffraction, and X-ray photoelectron spectroscopy revealed that (i) acid-catalyzed sol-gel method in this case could fully convert the amorphous TiO2 sol to anatase TiO2 even at low temperature (70°); (ii) TiO2 particles were covalently immobilized within the voids of the polymer monolith via Si–O–Ti linkage; (iii) acid-catalyzed hydrolysis of the trimethoxysilane groups and VAc led to significant increase in the hydrophilicity of the obtained hybrid porous monolith, Ti-P(VAc-MPS), with a water contact angle of 19.6°. Exemplified by the photo-degradation of methyl orange (MO) in aqueous solution, Ti-P(VAc-MPs) exhibited good photocatalytic activity and excellent recyclability for water decontamination. The as-prepared Ti-P(VAc-MPS) monolith could be efficiently regenerated for cyclic runs without further energy-consuming separation process such as centrifugation and filtration. The present approach opens a green way for obtaining other porous inorganic-organic photocatalyst for water contaminant removal.

Graphic Abstract


TiO2 Photocatalysis polyHIPE Porous Ti–O–Si linkage Separation-free 


Funding information

The authors are grateful to the National Natural Science Foundation of China (Grant nos. 51403140 and 51573109) and the State Key Lab of Polymer Material Engineering Foundation (No. sklpme 2015-2-01 and 2016-3-02) for supporting this research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary material

396_2018_4361_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1380 kb)


  1. 1.
    Legrini O, Oliveros E, Braun A (1993) Photochemical processes for water treatment. Chem Rev 93(2):671–698CrossRefGoogle Scholar
  2. 2.
    Thompson TL, Yates JT (2006) Surface science studies of the photoactivation of TiO2 new photochemical processes. Chem Rev 106(10):4428–4453CrossRefPubMedGoogle Scholar
  3. 3.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96CrossRefGoogle Scholar
  4. 4.
    Leong S, Razmjou A, Wang K, Hapgood K, Zhang X, Wang H (2014) TiO2 based photocatalytic membranes: a review. J Membr Sci 472:167–184CrossRefGoogle Scholar
  5. 5.
    Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114(19):9919–9986CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang J, Zhou P, Liu J, Yu J (2014) New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. PCCP 16(38):20382–20386CrossRefPubMedGoogle Scholar
  7. 7.
    Chládková B, Evgenidou E, Kvítek L, Panáček A, Zbořil R, Kovář P, Lambropoulou D (2015) Adsorption and photocatalysis of nanocrystalline TiO2 particles for reactive red 195 removal: effect of humic acids, anions and scavengers. Environ Sci Pollut Res 22(21):16514–16524CrossRefGoogle Scholar
  8. 8.
    Ding D, Liu K, He S, Gao C, Yin Y (2014) Ligand-exchange assisted formation of Au/TiO2 schottky contact for visible-light photocatalysis. Nano Lett 14(11):6731–6736CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang J, Yang H, Jiang L, Dan Y (2016) Enhanced photo-catalytic activity of the composite of TiO2 and conjugated derivative of polyvinyl alcohol immobilized on cordierite under visible light irradiation. Journal of Energy Chemistry 25(1):55–61CrossRefGoogle Scholar
  10. 10.
    Gelover S, Mondragón P, Jiménez A (2004) Titanium dioxide sol–gel deposited over glass and its application as a photocatalyst for water decontamination. J Photochem Photobiol A Chem 165(1):241–246CrossRefGoogle Scholar
  11. 11.
    Zainal Z, Hui LK, Hussein MZ, Taufiq-Yap YH, Abdullah AH, Ramli I (2005) Removal of dyes using immobilized titanium dioxide illuminated by fluorescent lamps. J Hazard Mater 125(1):113–120CrossRefPubMedGoogle Scholar
  12. 12.
    Yu JC, Ho W, Lin J, Yip H, Wong PK (2003) Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environ Sci Technol 37(10):2296–2301CrossRefPubMedGoogle Scholar
  13. 13.
    Christopher P, Moskovits M (2017) Hot charge carrier transmission from plasmonic nanostructures. Annu Rev Phys Chem 68:379–398CrossRefPubMedGoogle Scholar
  14. 14.
    Iwase A, Ng YH, Ishiguro Y, Kudo A, Amal R (2011) Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J Am Chem Soc 133(29):11054–11057CrossRefPubMedGoogle Scholar
  15. 15.
    Ungureanu S, Birot M, Laurent G, Deleuze H, Babot O, Julian-Lopez B, Achard MF, Popa MI, Sanchez C, Backov R (2007) One-pot syntheses of the first series of emulsion based hierarchical hybrid organic-inorganic open-cell monoliths possessing tunable functionality (Organo-Si(HIPE) series). Chem Mater 19(23):5786–5796CrossRefGoogle Scholar
  16. 16.
    Lv Z, Sun Q, Meng X, Xiao F-S (2013) Superhydrophilic mesoporous sulfonated melamine–formaldehyde resin supported palladium nanoparticles as an efficient catalyst for biofuel upgrade. J Mater Chem A 1(30):8630–8635CrossRefGoogle Scholar
  17. 17.
    Meng X, Zeng N, Zhang J, Jiang L, Dan Y (2017) Polyvinyl alcohol-based hydrophilic monoliths from water-in-oil high internal phase emulsion template. J Colloid Interface Sci 497:290–297CrossRefPubMedGoogle Scholar
  18. 18.
    Silverstein MS (2014) Emulsion-templated porous polymers: a retrospective perspective. Polymer 55(1):304–320CrossRefGoogle Scholar
  19. 19.
    Dell’Anna MM, Mali M, Mastrorilli P, Cotugno P, Monopoli A (2014) Oxidation of benzyl alcohols to aldehydes and ketones under air in water using a polymer supported palladium catalyst. J Mol Catal A Chem 386(5):114–119CrossRefGoogle Scholar
  20. 20.
    Modak A, Pramanik M, Inagaki S, Bhaumik A (2014) A triazine functionalized porous organic polymer: excellent CO2 storage material and support for designing Pd nanocatalyst for C–C cross-coupling reactions. J Mater Chem A 2(30):11642–11650CrossRefGoogle Scholar
  21. 21.
    Song Y, Zhang J, Yang H, Xu S, Jiang L, Dan Y (2014) Preparation and visible light-induced photo-catalytic activity of H-PVA/TiO 2 composite loaded on glass via sol–gel method. Appl Surf Sci 292:978–985CrossRefGoogle Scholar
  22. 22.
    Mohamed R, Ismail A, Othman I, Ibrahim I (2005) Preparation of TiO 2-ZSM-5 zeolite for photodegradation of EDTA. J Mol Catal A Chem 238(1):151–157CrossRefGoogle Scholar
  23. 23.
    Daaou M, Bendedouch D (2012) Water pH and surfactant addition effects on the stability of an Algerian crude oil emulsion. J Saudi Chem Soc 16(3):333–337CrossRefGoogle Scholar
  24. 24.
    Rodriguez MA, Liso M, Rubio F, Rubio J, Oteo J (1999) Study of the reaction of γ–methacryloxypropyltrimethoxysilane (γ–MPS) with slate surfaces. J Mater Sci 34(16):3867–3873CrossRefGoogle Scholar
  25. 25.
    Matinlinna JP, Ozcan M, Lassila LV, Vallittu PK (2004) The effect of a 3-methacryloxypropyltrimethoxysilane and vinyltriisopropoxysilane blend and tris(3-trimethoxysilylpropyl)isocyanurate on the shear bond strength of composite resin to titanium metal. Dent Mater 20(9):804–813CrossRefPubMedGoogle Scholar
  26. 26.
    Abdelmouleh M, Boufi S, Belgacem M, Dufresne A (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67(7–8):1627–1639CrossRefGoogle Scholar
  27. 27.
    Huang X, Guo J, An Q, Gong X, Gong Y, Zhang S (2016) Preparation and characterization of di-hexadecanol maleic/triallyl isocyanurate cross-linked copolymer as solid–solid phase change materials. J Appl Polym Sci 133(40)Google Scholar
  28. 28.
    Innocenzi P, Brusatin G (2004) A comparative FTIR study of thermal and photo-polymerization processes in hybrid sol–gel films. J Non-Cryst Solids 333(2):137–142CrossRefGoogle Scholar
  29. 29.
    Franquet A, Terryn H, Vereecken J (2003) IRSE study on effect of thermal curing on the chemistry and thickness of organosilane films coated on aluminium. Appl Surf Sci 211(1–4):259–269CrossRefGoogle Scholar
  30. 30.
    El hadad AA, Carbonell D, Barranco V, Jiménez-Morales A, Casal B, Galván JC (2011) Preparation of sol–gel hybrid materials from γ-methacryloxypropyltrimethoxysilane and tetramethyl orthosilicate: study of the hydrolysis and condensation reactions. Colloid Polym Sci 289(17–18):1875–1883CrossRefGoogle Scholar
  31. 31.
    Zhu D, van Ooij WJ (2002) Structural characterization of bis-[triethoxysilylpropyl]tetrasulfide and bis-[trimethoxysilylpropyl]amine silanes by Fourier-transform infrared spectroscopy and electrochemical impedance spectroscopy. J Adhes Sci Technol 16(9):1235–1260CrossRefGoogle Scholar
  32. 32.
    Jana S, Lim MA, Baek IC, Kim CH, Seok SI (2008) Non-hydrolytic sol–gel synthesis of epoxysilane-based inorganic–organic hybrid resins. Mater Chem Phys 112(3):1008–1014CrossRefGoogle Scholar
  33. 33.
    Huang X, Yang Y, Shi J, Ngo HT, Shen C, Du W, Wang Y (2015) High-internal-phase emulsion tailoring polymer Amphiphilicity towards an efficient NIR-sensitive Bacteria filter. Small 11(37):4876–4883CrossRefPubMedGoogle Scholar
  34. 34.
    Chibac AL, Melinte V, Buruiana T, Mangalagiu I, Buruiana EC (2015) Preparation of photocrosslinked sol-gel composites based on urethane-acrylic matrix, silsesquioxane sequences, TiO2, and Ag/au nanoparticles for use in photocatalytic applications. J Polym Sci Part A: Polym Chem 53(10):1189–1204CrossRefGoogle Scholar
  35. 35.
    Zhao Y, Xu L, Wang Y, Gao C, Liu D (2004) Preparation of Ti• Si mixed oxides by sol–gel one step hydrolysis. Catal Today 93:583–588CrossRefGoogle Scholar
  36. 36.
    Thamaphat K, Limsuwan P, Ngotawornchai B (2008) Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J (Nat Sci) 42(5):357–361Google Scholar
  37. 37.
    Irie H, Watanabe Y, Hashimoto K (2003) Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem Lett 32(8):772–773CrossRefGoogle Scholar
  38. 38.
    Fang Q, Meier M, Yu JJ, Wang ZM, Zhang JY, Wu JX, Kenyon A, Hoffmann P, Boyd IW (2003) FTIR and XPS investigation of Er-doped SiO2–TiO2 films. Mater Sci Eng B 105(1–3):209–213CrossRefGoogle Scholar
  39. 39.
    Lin Y-L, Wang T-J, Jin Y (2002) Surface characteristics of hydrous silica-coated TiO 2 particles. Powder Technol 123(2):194–198CrossRefGoogle Scholar
  40. 40.
    Dirksen A, Zuidema E, Williams R, De Cola L, Kauffmann C, Vögtle F, Roque A, Pina F (2002) Photoactivity and pH sensitivity of methyl orange functionalized poly (propyleneamine) dendrimers. Macromolecules 35(7):2743–2747CrossRefGoogle Scholar
  41. 41.
    Tong Z, Yang D, Shi J, Nan Y, Sun Y, Jiang Z (2015) Three-dimensional porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with excellent visible-light photocatalytic performance. ACS Appl Mater Interfaces 7(46):25693–25701CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Polymer Materials Engineering of ChinaPolymer Research Institute of Sichuan UniversitySichuanChina

Personalised recommendations